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SUBSET SELECTION PROCEDURES:    A REVIEW 
AND AN ASSESSMENT * 

Shanti  S.  Gupta        and S.  Panchapakesan 
Purdue University Southern Illinois University 

1.     INTRODUCTION I 

It  is well  over three decades  since statistical   inference problems 

were first posed in the now familiar selection and ranking framework. 

More than  700 papers have been published over these years  in journals 

and proceedings of international  conferences.    During the last fifteen 

years,  five books and a categorized bibliography have been published. 

Starting with a handful  of researchers  in the fifties,  the area of selection 

and ranking procedures has gained the attention of numerous active  researchers 

today. 

Selection and ranking problems have generally been studied using either 

the indifference-zone approach of Bechhofer (1954)  or the so-called subset 

selection approach  due mainly to Gupta  (1956).    A comprehensive survey of 

significant contributions  using these two approaches  covering a span of 

almost thirty years  is  given  in Gupta and Panchapakesan  (1979).    The present 

paper is mainly concerned with the subset selection approach.    Our aim is 

to provide a historical  perspective,  trace the major developments that took 

place in the subset selection theory over the years  1950-1980 divided into 

three periods,  indicate the recent trends, and discuss the impact of 

the research in this area,  and the directions  for future research.     In 

doing so, we will  not be concerned with details of the several  procedures 

but only with the nature and the trend of the developments  in each period. 

*This  research was supported by the Office of Naval  Research  Contract 
N00014-75-C-0455 at Purdue University.     Reproduction in whole or in 
part is  permitted for any purpose of the United States Government. 
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The periods themselves serve more as a general   reference to the periods of 

several  phases of growth of the theory rather than as precise partition of 

the periods of several  phases of growth of the theory rather than as precise 

partition of the entire period. 

2.     HISTORICAL PERSPECTIVE 

In many practical  situations,  the experimenter is  faced with the 

problem of comparing k (^ 2)  populations.    These may,  for example,  represent 

different varieties of wheat in an agricultural  experiment, or different 

competing coherent systems  in engineering models,  or different drugs  for a 

certain ailment.     In all   these problems,  each  population  is  characterized 

by the  value of a parameter e.     In the above-mentioned examples,  this 

parameter e may be the average yield of a variety of wheat, or the reliability 

function of a system, or an appropriate measure of the effectiveness of a 

drug. . ,,.'.. 

The classical  approach  in the preceding situations has been to test the 

so-called homogeneity hypothesis H„ that e,  =...=  e. , where e-,,...,e,   are the 

(unknown)  values of the parameter o  for the k populations.     If the populations 

are assumed to be normal  with means  6i,...,e.   and a common unknown variance 

a    (which  is  a nuisance parameter), we have the familiar one-way  classification 

model  and the test can be carried out using Fisher's  analysis of variance 

technique.    However, this  usually does not serve the experimenter's  real  purpose 

which is not just to accept or reject the homogeneity hypothesis.    The real 

goal  often is to identify the best population  (the variety with the largest 

average yield,  the most reliable system and so on).    As Bechhofer noted in his 

now classical  1954 paper, the deficiencies of the ANOVA  'do not lie in the 

design aspects of the procedure but rather in the types of decisions which  are 



made on the basis of the data'.    Of course it was  recognized  (see Cochran and 

Cox,   1950,  p.   5)that the hypothesis  that there is no difference between 

different treatments  is  unrealistic and that the real  problem is to obtain 

estimates of the sizes of the differences between the treatments.    However, 

the method of estimating the sizes of differences was often used as an 

indirect way of attempting to reach the goal  of finding the best treatment 

or treatments.    The attempts  to formulate the decision problem to answer this 

realistic goal  set the stage for the development of the selection and ranking 

theory. 

The two main approaches that have been used in formulating a selection 

and ranking problem are familiarly known as the indifference zone approach 

and the subset selection approach.     Suppose there are k populations  7T•,,...,ir, 

where TT.   is  characterized by the  distribution function F„   ,  i  -  l,...,k, where 

e.  is a  real-valued parameter with a value in the set B.     It is assumed that 

the 6-  are unknown.    Let us  denote the ordered e-  by er-j-i <_ Oro-i i-•-l 9r,-i 

and the (unknown)  population IT.  associated with er.-i by TT/-N>  i  =  l,...,k. 

The populations are ranked according to their e-values.    To be specific, 

iT/.\  is  defined to be better than TT/. N   (TT/^-N -< TT/-,-))  if i  < J   (that is, 

6r.-| < 8r--])-    The experimenter is presumed to have no prior information 

regarding the true pairing between  (Oi,...,o.)  and ( "ri i'• • •'^r^-i).    The 

basic problem in the indifference zone approach is to select one of the k 

populations with a guarantee that the probability of selecting the best 

population,  called the probability of a correct selection (PCS),  is  at 

least P*  (1/k  -^  P* <  1) whenever '5(e|-|^-|,f)r|^_i O  > 6*;  here '5(0[-|^-],0r,^_^ j)   is 

an appropriate measure of the separation of the best population TT/J^X  and the 

next best population ^Tf|,_^^•    The constants P* and 6* are specified by the 

experimenter in advance.    The statistical  problem is to define a selection 



rule which really contains three parts: sampling rule, stopping rule for 

sampling and decision rule. If the rule is based on a single sample of 

fixed size n from each population, then the minimum value of nis determined so that 

the specified minimum PCS can be guaranteed. As we stated above, this 

guarantee is to be met when e = (ep...,e(^) belongs to a part of the 

parameter space Q,  namely, n^* = {e: '5(er|^-|,e|-|^_i-|) > 6*}. The region 

U^  is called the preference zone. It should be noted that no requirement 

is made of the PCS when e belongs to a certain part of n.     It is this fact 

that led to the original label of 'indifference zone' approach. There are 

several variations and generalizations of the basic goal discussed above. 

For details, reference can be made to Gupta and Panchapakesan (1979). 

In the subset selection approach for selecting the best population 

the goal is to select a nonempty subset of the k populations so that the 

best population is included in the selected subset with a minimum guaranteed 

probability P*(r- < P* < 1). Here the size of the selected subset is not 

determined in advance but by the data themselves. Selection of any subset 

consistent with the goal (here selecting the best population) is called a 

correct selection (CS) and the probability of a correct selection using a 

rule R is denoted by P(CS|R). The requirement that 

■ • P(CS|R) > P* (1) 

is referred to as the basic probability requirement or the P*-condition. 

Denoting the (random) selected subset by S, the requirement (1) can 

be written in the form 

^.   , Pr(S 3 ^(^)) > P* (2) 

which brings out its similarity to the probability statement associated with 

a confidence interval procedure. While P* corresponds to the confidence 



coefficient,  the size of S,  denoted by   |S|,  corresponds  to the  'length'  of 

the confidence interval.    Thus  any subset selection rule for  'constructing'   S 

meets the criterion of validity by satisfying (1)  or (2)  and  |S|  serves as a 

measure of the sensitivity or performance of the rule.    It should also be 

emphasized that in the subset selection framework there is no indifference 

zone specification; the validity criterion or the P*-condition must be 

satisfied whatever be the configuration of the unknown parameters.    The 

configuration of the parameters which yields the infimum of the probability 

of a correct selection  (PCS)  is  referred to as the least favorable configura- 

tion  (LFC). 

Besides being a goal  in itself,  selecting a subset containing the best 

can also serve as  a  first-stage screening in a two-stage procedure designed 

to choose one population as the best; see, for example, Alam (1970), and 

Tamhane and Bechhofer (1977). 

To point out some other differences between the indifference zone and 

the subset selection approaches,  consider the problem of selecting the 

population associated with the largest mean from k normal  populations 

2 2 
with unknown means  e,,...,e|^ and a common variance a   .    When a    is  known, 

Bechhofer (1954)  proposed a single stage procedure based on samples of size n 

each from the k populations.    When a    is not known,  a two-stage procedure 

is  necessary to guarantee the probability requirement using the indifference 

zone approach.    On the other hand,  one can solve the problem by single stage 

procedures  for both  cases  in the subset selection approach.    Also the subset 

approach can be used when the sample size n ^ 2 has already been chosen 

without regard to the type of analysis to be used for the data. 

Besides the problem of selecting the best of k given populations, another 

problem that has been investigated from the early period is that of comparing k 
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experimental  treatments  (populations) with a standard or a control  treatment. 

The goal  is to select a subset of the experimental  treatments that contains 

all  treatments that are better than the standard or the control. 

3.     EARLY DEVELOPMENTS  (1950-1965) 

Early investigations  of subset selection  rules  predictably  centered 

around well-known parametric families of distributions,  namely, normal, 

binomial  and gamma.     Gupta  (1956)  considered a procedure for selecting the 

population with the largest mean from k normal  populations with means M-|,...,y|^ 

and a  common variance a   .    He considered the case of known as well  as  unknown 

a^.    Based on samples of size n from these populations, his  rule in the case 

2   . 
of known a    is ' 

R,:    Select TT.  if and only if X.  >^   max    X.  —-, (3) 
' "" ^      l<j<k    ^      /n 

where X.   is the mean of the sample from TT^ ,  i  =  l,...,n, and d > 0 is  the smallest 

constant such that the probability requirement  (1)  is  satisfied.    The smallest 

constant d satisfying the requirement is given by 

inf P(CSlR)  = P* ' (4) 
a 

2 
where a  denotes the parametric space. When a is not known, the rule R^ of 

Gupta (1956) is of the same form as R-, except that o is replaced by s, where 

? 2 
s is the usual pooled unbiased estimator of a . Of course, the constant d 

will have a different value now. 

For selecting the population with the largest scale parameter from k 

gamma populations with (unknown) scale parameters ep...,o, and a common known 

shape parameter v, Gupta (1963) proposed the rule 



R^:    Select n■   if and only if X.   -  c    max    X. (5) 
-^ '' ^ "      l<j<k    -^ 

where X.  is the mean of a random sample of size n from T:^ ,  i  = 1,... ,n, 

and c 6  (0,1)  is to be determined to satisfy the P*-requirement. 

The rules such as R,,  Rg, and R^ are all   referred to as  Gupta's 

maximum type rules.    Of course,  these have their counterparts  for the 

problem of selecting the population with the smallest parameter of interest. 

These maximum type rules have been investigated extensively in the literature; 

their optimal   properties have also been studied. 

As opposed to the maximum type rules, average type rules were proposed by 

Seal   (1955,  1957,  1958a).  In the case of selecting the normal  population with 

2 
the largest mean when the common variance a    is  unknown, the average-type 

rule is 

R,:    Select IT.   if and only  if 

k-1 
i)  - - ■ !      ■ ^       ■ (6) X.     >        y        C       Vr ^    -    St, ! 1 - ^^^    r    [r] 

where xill ± xill ±...± ^iKi  denote the ordered sample means after deleting 

? 2 
X.(i = l,...,k), s is the usual pooled unbiased estimator of a , c-j,... ,C|^_-| 

K ~ I 

are nonnegative constants subject to the constraint I  c.  =  1,  and 
i=l 

t = t(k,P*,c,,... ,c,   •])  is  chosen to satisfy the P*-requirement.    However, 

as we will   discuss  later,  the maximum type rules are found to be approximately 

Bayes optimal   under reasonable loss  functions.    The additional  simplicity in 

determining the constants associated with these rules makes them more appealing 
f'^ ■   ■ ■   ,■        'I 

and useful. . ■ :l 

The initial  investigations of the rules for normal  means, normal  variances 

and gamma scale parameters were concerned with derivations of the properties of 

the rules  such as monotonicity and of results  relating to the supremum of the 
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expected size of the selected subset for these specific distributions. 

The first paper in the direction of a unified treatment was by Gupta (1965) 

who treated selection in terms location and scale parameters. It was assumed 

that the selection statistics used in the rule have distributions differing in 

a location or a scale parameter. Let T. be the statistic associated with the 

sample from -n.,  i = l,...,k. Then the distributions of the T. are F(x-e.), 

i = l,...,k, or F(x/e.), i = l,...,k, where the e. are the parameters that 

are to be ranked. The rules investigated by Gupta (1965) are R^ (location case) 

and R^ (scale case) given below. - 

Rr-    Select TT. if and only if ! 
0 1 

T. ^   max    T.-d '   ■ ,      (7) 
^       l<j<k    J 

and 

R^:    Select TT.  if and only if 
6 1 -^ 

T. 21 c max    T . (8) 

where d > 0 and c £  (0,1) are to be determined so that the P*-requirement 

is satisfied. 

Gupta (1965) showed that the infimum of the PCS is attained in either 

case when the parameters are equal and this infimum is independent of their 

common value. He also established some important properties that are enjoyed 

by both procedures. These are: 

(1) The procedures are monotone, i.e., for e. > 9., the probability of 

including TT. in the selected subset is at least as large as that of including 

TT . . 
J 

(2) The probability of selecting the best population in the selected 

subset of size ]S| (not known in advance) is maximum among all possible subsets 

of size Is I. 



0 

(3) If the density f(x,e) possesses a monotone likelihood ratio in x, 

then the E(|S|) is maximized over all parametric configurations when the e. are 

equal and this maximum is kP*. 

For selecting the binomial population with the largest success probability, 

Gupta and Sobel (1960) proposed a location type rule. Let X^. be the number of 

successes in n trials associated with TT^ , i = l,...,k. Their rule is 

R^: Select IT. if and only if   . | 

X. ^ max X. - d (9) 
'       l<j<k ^ 

where d is the smallest nonnegative integer for which the P*-requirement is met. 

An interesting aspect of this procedure R^ is that the infimum of the 

PCS occurs when all the parameters are equal but it is not independent of 

their common value, say, p. For k = 2, Gupta and Sobel (1960) showed that 

the infimum of PCS over p occurs when p = -p- When k > 2, the common value p 

for which this infimum takes place is not known. However, it is known that 

this common value p -> 4 as n -> ». This difficulty regarding the infimum of 

the PCS led to the investigations of conditional selection rules which will 

be discussed in the next section. 

The investigations of these early period were mainly under the assumption 

that the sample sizes are equal and that the nuisance parameters (such as 

a- for the normal means problem) are equal. 

Besides the problem of selecting the best of k given populations, procedures 

were proposed and investigated also for the problem of selecting a subset 

containing all the populations that are better than a control, and that of 

partitioning a set of populations with respect to a control. The early 

contributors are Bhattacharya (1956), Gupta and Sobel (1958), and Seal (1958b). 
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4.     YEARS OF MAIN GROWTH   (1965-1975) 

This period witnessed a very significant growth of the ranking and 

selection theory,  in general,  and the subset selection theory,  in particular. 

This  period also marks the advent of the  'second generation'   of researchers 

coming mostly out of Cornell  University,  University of Minnesota and Purdue 

University.    The  research  during this  period encompassed many facets of the 

subset selection theory.    The main developments  during this period can be 

broadly categorized into  (i)   unified results  for the existing theory,   (ii) 

generalizations and modifications  in the formulation of the problem and the 

goal,  (iii)  decision-theoretic formulations, Bayes and empirical  Bayes procedures, 

(iv)  selection procedures  for multivariate normal  and multinomial  populations, 

(v)   development of conditional  procedures,   (vi)  nonparametric procedures, 

(vii)  selection from restricted families and (viii)  sequential  procedures. 

As one can see, many of the developments  that took place in the theory had 

their beginnings  in this period.    We will  discuss these briefly.    For more 

details on these results,  the reader is  referred to Gupta and 

Panchapakesan  (1979). 

I 

4.1    Unified Theory 

In Section 3, we  referred to Gupta  (1965) who presented unified results 

for location and scale parameter families.     Later,  these results were given 

in a more general   form by Gupta  (1966).    This was  followed by a more compre- 

hensive unified theory by Gupta and Panchapakesan  (1972).    Let TT-J ,... ,ir|^ have 

absolutely continuous  distributions  F^  >---Jn  '  respectively, where the e. 
^1 \ ^ 

belong to an open interval © of the real   line.     It is assumed that iF^^}, 

6 6 0,  is a stochastically increasing family in 6.    Let h  = h    ^,  c 6 [1,°°), 

d €  [0,«=)  be a  class of real-valued functions  defined on the real   line satisfying 

the following conditions:     For every x belonging to the support of F^, 
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(i) h  ,(x) >_ X, (ii) h-. Q(X) = x, (iii) h  ,(x) is continuous in c and d, and 

(iv) lim  h  ,(x) = «=, c fixed, and/or lim  h  ,(x) = «>, d fixed, x ^ 0. 
1C5Q ^.C,u. 

Using the above class of functions h, Gupta and Panchapakesan (1972) 

considered the following class of procedures whose typical member is denoted by 

R^. 

R, :    Select the population v.  if and only if 

h(x.)  >    max    x., ! (10) 
^    -l<j<k    J .        f 

where x. is an observation from TT., i = l,...,k. The PCS is minimized when 

e-, =...= e. = e. In general, the value of the PCS depends on e. Under certain 

regularity conditions (see Gupta and Panchapakesan, 1979, p. 206) Gupta and 

Panchapakesan (1972) obtained a sufficient condition for the PCS to be 

monotonically increasing (or decreasing) in e. When e is a location or a 

scale parameter, the PCS is independent of 0. Gupta and Panchapakesan also 

obtained a sufficient condition for the supremum of the expected subset size 

to take place when the parameters are equal. This latter sufficient condition 

implies the one for the monotonicity of the PCS in e. Besides the cases of 

location and scale parameters earlier discussed by Gupta (1965), the general 

results have been applied to the case where the density fp(x) is a convex 
CO 

mixture of the form    /    w(e,j)g-(x).    Here g.(x), j = 0,1,...,  is a sequence 
j=0 ^ J 

of density functions  and the w(e,j)  are nonnegative weights such that 
CO j     -        . 

I    w((),j)  =  1.    The results for the convex mixture directly apply to the 
j=0 
procedures for selection from multivariate normal populations by Gupta and 

Panchapakesan (1969) in terms the multiple correlation coefficient of one 

component with respect to the others, and by Gupta and Studden (1970) in 

terms of the Mahalanobis distance function. It should also be noted that 
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the class of functions h includes the usual  choices made earlier, namely, 

h(x)  =  ex,  c >  1,  and h(x)  =  x+d,  d ^ 0.    The class  also includes 

h(x)  =  cx+d,  c >^ 1,  d >_ 0, which was  used by some authors  later. 

4.2    Generalizations and Modifications 

Deverman and Gupta  (1969)  considered a generalization of the basic subset 

selection goal.     Let Or-i-i ±...± Or,-| be the ordered parameters  of k populations. 

The populations  associated with t  largest e.'s  are the t best populations. 

Any subset of a fixed size s  is  called an s-subset.    The goal   is to select a 

subcollection of the collection of all  the {^)  s-subsets with  a minimum 

guaranteed probability P* that the chosen subcollection contains at least one 

s-subset having at least c of the t best populations.    Obviously,  for a meaningful 

problem,  the integers  c,  s, t,  and k must be such that k ^ 2 and 
min(s,t) t k i  k 

max(l, s+t+l-k) < c < min{s,t). Also, P* ^i  I        i\){l'_])/C^) ■    When 
i=c 

s = t = c = 1, we get the basic problem of selecting a subset to contain the 

best. 

In the basic formulation we select a nonempty subset of the k given 

populations. When the parameters e. are all very close to one another, we 

are likely to select all the populations. So it is meaningful to put a 

restriction that the size of the selected subset will not exceed m (1 < m < k). 

Even otherwise, one may want to select a nonempty subset of a random size 

subject to a maximum of m. Such a formulation is called a restricted subset 

size formulation. The general theory was developed by Santner (1973, 1975) 

and the normal means selection problem was investigated by Gupta and Santner 

(1973). An important feature of this formulation is that an indifference 

zone is introduced. The minimum guaranteed PCS is required when the parametric 

vector 0 = (o-,,. .. ,0 ) belongs to the preference zone. The minimum sample size 
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n and the constant associated with the selection rule are to be determined. 

The general  theory of Santner (1975)  formally reduces to give the results 

of Bechhofer (1954)  for m = 1  and,  those of Gupta (1956,  1965)  for m = k if 

the indifference zone is allowed to vanish. ' 

To illustrate the restricted subset selection problem,consider k normal 

2 
populations with unknown means vi-|,...,y|^ and a common known variance a  . 

We want to select a subset of size not exceeding m (1  < m <  k)  such that 

the best population  (the one associated with  prj^-,)   is  selected with a 

probability at least equal  to P* whenever yj-|^j - vi[k_]] L ^ where 6 > 0 is 

specified in advance.    The rule of Gupta and Santner (1973)  is 

R„:    Select v.  if and only if 
. O I 

^i->^«[k-m.l]'^[k]-|^ '■ ^"^ 

where X^,...,X|^ and Xp-, i-.-l Xj-^-j are the unordered and the ordered sample 

means based on samples of size n. For a specified value of 6, d will depend 

on k,  P*,  and n. 

Another modification is to relax the goal  of selecting the best popula- 

tion.     If o-,,...,e.   are the ranking parameters, one may be content with       ■ 

selecting populations  that are nearly as  good as  the best  (the one associated 

with er.-|).    Lehmann  (1963a)used this  idea though not for a subset selection 

goal.    Priority in introducing this concept goes to Fabian  (1962) who defined 

a A-correct ranking for the problem of Bechhofer (1954).    Let us  consider the 

case of location parameters.    Lehmann  (1963a)defined a good population as 

any population TT.  for which e.  > Q^^-j - A, A > 0.    Desu (1970)  defined 

superior and inferior populations by e^  >_ Q^^-^ -A-,  and 9^. ± Q^^-^ - ts^^ 

respectively, where 0 < A.   < A^.    His  goal  is  to aelect a nonempty subset 

of the k given populations that excludes all   inferior populations with a 
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minimum guaranteed probability P*.    The performance of a procedure 

satisfying the P*-requirement can be evaluated,  for example, by the 

expected number of superior populations  included in the selected subset. 

Carroll,  Gupta and Huang  (1975)   considered eliminating inferior populations 

with respect to the t best,  i.e., those TT^.'s for which e^.  <_ Qri^.^+i] - ^^ 

A > 0.    They called these populations  strictly non-t-best.    These definitions 

are modified in an obvious way to handle scale parameters.    Panchapakesan 

and Santner (1977)  introduced a generalization by defining a good population 

relative to the t-th best as one for which e^. ^ P^^fk-t+l]^ where p is a 

function possessing certain general  properties.    They considered two 

goals:     (i)  selecting a nonempty subset containing only good ones,  and (ii) 

selecting a subset whose size does not exceed m (1  < m < k)  and which will 

include at least one good population.    Their treatment complements the 

unified results of Gupta and Panchapakesan (1972)  and Santner (1975). 

4.3    Decision-theoretic formulation; Bayes and empirical  Bayes Procedures 

During this period of main growth,  the early contributions  to the 

decision-theoretic formulation was  made.    Some Bayes and empirical  Bayes 

procedures were derived.     It may be felt that these early contributions 

were modest compared to the growth of the literature on the classical 

procedures  during this period.    However,  they gave the impetus to the 

developments  that would follow in the subsequent periods. 

Now, to describe the decision-theoretic setup,  let TT^.   (i  = 1,... ,k) 

be described by the probability space  {Z, G, P-), where P^.  belongs to some 

family p of probability measures.    Let us assume that the family P is 

stochastically ordered;  in other words,  there is a stochastic ordering 

between any pair  (P.,P.)   from p.     The stochastically  largest among 
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iT,,...,TT, is the best population. In the case of more than one contender, 

we assume that one of them is tagged as the best. We observe ^ = (X-|,... ,X|^) 

where X. is an observation from TT ., i = l,...,k. The space of the observation 

;< is 'X^  = {^^ = (x-i,... ,X|^): x^. 6 Z, i = 1,... ,k}. The decision space &  consists 

of the 2*^ subsets d of the set {1,2,... ,k}-, in other words, J9 = {d|dc {1,...,k}}. 

Thus a decision d corresponds to the selection of a subset (possibly the empty 

set) of the k given populations. Any decision d € J& is a correct selection if 

j € d where TT • is the best population. A selection procedure is a measurable 

V k 
function 6 defined on z y- &  such that for each x € % , we have 6(x,d) >^ 0 for 

any d € j9 and \  6(x,d) = 1. Here <s(x,d) is the probability that the subset d 

is selected when x is observed. The individual selection probability p^. (x) 

for the population TT . is given by p.(x) = \  6(x,d), the summation being over 
^ ^    d3i 

all subsets that contain i. While, in general, the individual selection 

probabilities do not uniquely determine the selection procedure 5(x,d), they 

do so when the p.(x) take on only values 0 and 1 (see Gupta and Panchapakesan, 

1979, p. 212). ... 

Studden  (1967)  studied optimum selection rules assuming that   . 

e =  (eT,...,e,)   is  a permutation of a k-vector of known elements.    He 

assumed a  loss function L(e,d)  =    \ L.(o)  + L(l-I), where L.(e)  is the loss 
i€d 

whenever TT.  is selected and I = 1  or 0 according as a correct selection is 

or is not made.    This  loss  function is also assumed to be permutation- 

invariant.    Studden  (1967)  obtained the best (in the sense of minimizing the 

risk)   invariant selection  rule. 

Nagel   (1970)  defined a concept of just selection rules.    Suppose that 

> defines a partial  order in Z.    We say y is preferable to x if y > x.    A 

selection rule R,  defined by its  individual  selection probabilities 
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p.(x),  i  =  1,... ,k,  is  called just if and only if 
1  'X- 

^ ^^i' \\^i ^""^'" ^ ^ '^ Piv > Pi^^)- y 

Let s^ denote the space of the parameter vector e and Q^  denote the part of 

Q  in which all the parameters are equal. Nagel (1970) showed that, under 

appropriate ordering on the parameter space, for any just rule R 

inf P(CS|R) = inf P(CS|R), (12) 

which is a reasonable property to impose on a rule. Nagel also showed that 

a permutation-invariant just rule is montone. 

Deely and Gupta (1968) obtained Bayes procedures considering linear 

loss functions of the type 

^ .    ' L(S,e) = I  a.(e. .-e ) (13) 

where S denotes the set of indices of the selected populations. Deely (1965) 

investigated empirical Bayes procedures and derived these procedures in several 

special cases. 

4.4 Selection Procedures for Multivariate Normal and Multinomial Distributions 

Several problems were investigated relating to the best component of the 

mean vector of a single multivariate normal population and the best of several 

multivariate normal populations. For ranking several multivariate normal 

populations several criteria were used such as the Mahalanobis distance 

function (Alam and Rizvi, 1966; Gupta, 1966; Gupta and Studden, 1970), generalized 

variance (Gnanadesikan and Gupta, 1970), and multiple correlation coefficient 

between a particular component and the remaining ones (Gupta and Panchapakesan, 

1969). However, in some of these problems the exact infimum of the PCS was 

not established in general. For selecting the best component of a single 
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multivariate normal population, Gnanadesikan (1966) considered a location 

type procedure based on sample component means. Except in the case of bivariate 

normal, only a lower bound of the PCS is used to obtain a conservative value of 

the constant to be used in the procedure even in the case of known correlation 

matrix z. The difficulty is due to the fact that the association between the 

ranked components and the known correlations is unknown. If we assume that 

the components have the same variance and are equally correlated with correlation 

p > 0, then the exact solution is available (Gupta, Nagel and Panchapakesan, 

1973). For selecting the best of several p-variate normal distributions, 

N(y.,E.), i = l,...,k, in terms of the Mahalanobis distance function, Gupta 

(1966) and Gupta and Studden (1970) proposed procedures when the covariance 

matrices l■  are known as well as when they are unknown. The case of common 

z (E. = z for all i) was not solved. This was later solved in an approximate sense 

by Chattopadhyay (1981). A few other measures were considered (Frischtak, 1973; 

Gnanadesikan, 1966) for ranking multivariate normal populations but the results 

in these cases are very limited in scope or are asymptotic in nature. For 

selecting the populations better than a standard, Krishnaiah and Rizvi (1966) 

considered, as criteria, linear combinations of the elements of mean vectors 

and distance functions whereas Krishnaiah (1967) considered linear combinations 

of the elements of the covariance matrices.     ^ 

For selecting the most (or the least) probable cell in a multinomial 

distribution, Gupta and Nagel (1967) proposed a single stage procedure. Let 

X-,,...,X, denote the cell counts based on n independent observations from 
1     k 

a k-cell multinomial distribution with unknown cell probabilities p-|,...,P|^. 

Gupta and Nagel (1967) proposed and investigated the following rules Rg and 

R-,^ for selecting the cell with the largest and the smallest p^., respectively. 
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RQ: Select n. if and only if 

X. > max X. - D     ' ' (14) 
^  l<j£k ^ 

where  D =  D(k,n,P*)   is  the smallest nonnegative integer for which  the 

P*-condition is satisfied. ; * 

R-]^:    Select n.   if and only if 

X.   <    min    X. + C (15) 
"     .      ' ' l<j<k    J I. 

where C =  C(k,n,P*)  is the smallest nonnegative integer for which the 

P*-condition is satisfied. 

The first interesting point to emerge about Rg and R,Q is that unlike 

in the cases of earlier problems such as  normal means,  normal  variances, etc., 

the analysis  in the minimum case does not exactly parallel  that in the maximum 

case.    Also,  for k > 2, the LFC was not completely determined.    Gupta and Nagel 

(1967)  showed that the LFC (in terms of the ordered p.)  is of the type 

(0,... ,0,s,p,...,p),  s £ p,  in the case of RQ and is of the type (p,...,p,q), 

p ^ q,  in the case of R-,^.    An alternative to RQ  is  the inverse sampling 

selection rule of Panchapakesan  (1971,  1973)  for which the infimum of the PCS 

occurs when all  the cell  probabilities are equal. 

Multinomial  selection rules are also important in the sense that they 

provide distribution-free procedures.    Let TTi,...,Tr,   have   continuous  distributions 

F    ,  i  = l,...,k, which belong to a stochastically increasing family in o. 
^i 

Let p.  denote the probability that in a set of k observations,  one from each 

distribution,  the observation from IT.   is the largest,  i  =  l,...,k.    Selecting 

the stochastically  largest population is  equivalent to selecting the population 

associated with  the largest p^.    By taking observations,  vector at a time. 
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and noting which population yielded the largest observation, we can convert 

the problem, in an obvious manner, to that of selecting the most probable 

multinomial cell. ' 
i 

4.5    Conditional  Selection Procedures j ' 

In Section 3, we saw that,  for the Gupta-Sobel  rule [R^ defined by 

(9)],  the infimum of the PCS occurs when all  the success probabilities 

associated with the k binomial  populations are equal  to p,  but this 

common value p at which the infimum takes place is not known when k > 2. 

Thus there was no result earlier giving a reasonable conservative value of 

the associated constant for any given n.    Similar difficulties arise also 

with procedures for Poisson populations.    There are also a few other 

interesting points about the usual  procedures in this case.    Let us briefly 

mention them here. ' 

Let X-,,...,X,   denote the numbers of occurrences from k Poisson 

populations with parameters  X-|,...,X|^,  respectively.    Suppose we want to 

select the population with the largest x^..    Here the usual   location and 

scale type procedures  cannot be found to satify the P*-condition for all 

permissible values of P*.    Gupta and Huang  (1975a)  proposed a modified proce- 

dure R, 1 which selects u^.   if and only if     .      ■ 

X.+l  > c    max    X.I/ (16) 
^ l<j<k   J I 

where 0 < c = c(k,P*) < 1 is to be chosen subject to the P*-requirement. 

The motivation behind this procedure comes from a result of Chapman (1952) 

which says that there is no unbiased estimator of X1/X2 but X^/(X2+1) 

is "almost unbiased." Gupta and Huang (1975a) have shown that the infimum 

of the PCS occurs when x-, =...= x,^ = x; however, the common value x at which 

the infimum occurs is not established. 
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Since the common value of the parameters at which the infimum of the PCS 

occurs is not l<nown for these rules for the binomial and Poisson populations, 

the natural question is: Can we find conservative values for the constants 

defining the procedures? An answer in the affirmative follows from the use 

of conditional selection rules which form a part of the important contributions 

of the period under review. t 

Gupta and Nagel (1971) first proposed conditional subset selection rules 

in the case of binomial, Poisson, and negative binomial populations. Their 

rules are randomized just rules. So they satisfy (12). For selecting the 

binomial population with the largest success probability e^, their rule R-j^ 

is given by the individual selection probabilities 

(17) 

where t = x-,  +...+ x,   and the constants p and c.   are determined to satisfy 

E(p^(X)|T = t)  = P* (18) 

where T =  X-,  +...+ X, .    The important  fact to note about R12 and the similar 

Gupta-Nagel   randomized procedures  for Poisson and negative binomial  populations 

is that the infimum of the PCS takes place when the parameters  under consideration 

of the k populations are equal  and the constant associated with the rule 

(depending on the value of the statistic T on which the conditioning is done) 

is  independent of the common value of the parameters. 

For the binomial  selection problem Gupta, Huang and Huang  (1976)  proposed 

a nonrandomized conditional   rule 

1    1 if X.   >   c^ 

P-(x)  = 

\     0 

if X.  = c^,  i  = 

if  X.   <   c^ 

=  1,.. ,.,k. 

R T^:    Select IT.  if and only if 13 1 -^ 
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X.   >_   max    X,  -  D(t)  given T  E    ^ X.  - t, (19) 
l< 

<.  -  D(t)  given T  E    ); X.  - t, 
J 1 = 1  ^ l<j<k 

where D(t)  > 0 is to be chosen to satisfy the P*-condition.    Exact result for 

the infimum of the PCS is obtained for only k = 2;  in this  case,  the infimum 

is attained when p.,  = p^ = P and is  independent of the common value p.    For 

k > 2,  Gupta, Huang and Huang (1975)  obtained a conservative value for 

D(t).    They also obtained a conservative value for the constant d of the 

unconditional  rule R^ in Section 3.     It should be noted that,  in using the 

conditioning argument to obtain a conservative value of d, one can always 

guarantee the P*-condition.    The values of the constant d tabulated by Gupta 

and Sobel   (1960)  for k ^ 3 are based on normal  approximation and thus may 

lead to a drop of the PCS below P*. ' 

Conditional  rules for Poisson populations were given by Gupta and Huang 

(1975a).    These are similar to  R-, ■,  given by (16) with c(t)  in the place of c, 
k 

aiven that T =    7 X.  = t.     It is well  known that,  if X-,,...,X,   are independent 
i=l   ^ Ik 

Poisson variables with parameters  Xi,...,X|^,  respectively,  then the conditional 

joint distribution of X^,...,X^ given X-, +...+ X^ = N is multinomial with 

cell-probabilities p. = x./ix..    So the conditional  selection rule for Poisson 

can be exploited to provide a selection rule for selecting the most probable 

multinomial  cell which selects the cell  TT^.  if and only if 

X +1  > c    max    X., where c = c(k,N,P*) €  (0,1).    Gupta and Huang  (1975a)  did 
^ l<j<k    ^ 

propose this  rule.    A conservative value of c can be obtained from their 

results for the conditional  selection rule for Poisson populations. 

4.6    Nonparametric Procedures 

The first nonparametric subset selection procedure was studied by 

Rizvi  and Sobel   (1967)  for the problem of selecting the population having 
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the largest a-quantile (0 < a < 1)  from k populations having continuous 

distributions.    Assume that the size n of the sample from each population 

is sufficiently large so that 1 £ (n+l)a <_ n and define a positive integer r 

by the inequalities  r <_ (n+l)a <  r+1.    This  implies  that 1 £ r ^ n.     Let 

Y.   .  denote the jth order statistic from TT. , j  =  1,... ,n;  i  =  1,... ,k.    The 

procedure proposed by Rizvi  and Sobel   (1967)  is  interesting in the sense that 

it differs  from the usual  maximum type.    Their rule is 

R-,.:    Select IT.   if and only if 

Y     .  >    max    Y        , - (20) 
•"'^ - l<j<k    ^-'^'J 

where c is the smallest integer with 1 £ c ^ r-1  for which the P*-condition 

is satisfied.    However, a c-value satisfying the P*-condition exists only 

if a permissible value of P* does not exceed a value P-j  depending on n, a, 

and k.    The procedure is monotone and the expected subset size is maximized 

when all  the distributions are identical. 

Gupta and McDonald (1970)  assumed that the distributions  F^.,  i  = l,...,k, 

belong to a location or a scale parameter family.     For selecting the population 

associated with the  largest parameter,  they proposed procedures based on 

rank-sum or rank-score statistics  associated with the pooled sample obtained 

from samples of size n from each population.    Of the three procedures they 

proposed,  two are the usual maximum type procedures, one for the location case 

and the other for the scale case.    The best that can be said about the LFC 

for these procedures  is  that it occurs when Or|^_i-] =  ®rkl"     "^^ general,  the 

LFC for these procedures  is not an equi-parameter one unless  k = 2.     It was 

inadvertently claimed so by some authors earlier.    The same difficulty arises 

in the indifference zone formulation.    Formal  counterexamples were given by 

Rizvi  and Woodworth  (1970).     Gupta and McDonald (1970)  gave bounds  for the 
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infimum of the PCS.    The third procedure of Gupta and McDonald (1970)  is 

R.r-.    Select u.   if and only if i , 
ID 1 I 

H.  > d •    I (21) 

where the H.  are the appropriate statistics.    For this  rule, the infimum 

of the PCS is attained when e^  =...= e|^; however,  this  rule may select an 

empty subset unless  P* is  sufficiently  large.    A few other related papers 

are McDonald (1972,   1974),  Blumenthal  and Patterson  (1969),  and Puri  and 

Puri   (1968,   1969). I .      ■ 

If we have distributions  from a location parameter family, we can 

use procedures based on one-sample Hodges-Lehmann estimators.     For these 

procedures,  the LFC can be determined.    Ghosh  (1973)  studied such procedures 

with goals involving selection of a fixed number of populations.    Gupta and 

Huang (1974)  studied such a procedure for the goal  of eliminating populations 

which are strictly inferior to the t best. | 

A review of the procedures  described above and a few other related results 

are given by Gupta and McDonald (1982). :'        • ' 

4.7    Selection from Restricted Families ' 

A restricted family of probability distributions  is  defined by a partial 

order relation with  respect to a known distribution.    Such  families provide 

characterizations of life-length  distributions and thus are very important 

in reliability studies.     Selection rules  for such  restricted families were 

first considered by Barlow and Gupta  (1969).    In order to make our discussion 

of the selection procedures  for these families adequately self-contained, we 

will   define the partial  orderings that have been used.    For more details and 

related references,  the reader is  referred to Gupta and Panchapakesan  (1979, 

Chapter 16). ... .    j 

■'. j 
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We define the following partial  order {<)   relations  for two distributions 

F and G assumed to be absolutely continuous. , 

Definitions 4.1.     (1)    F is said to be convex with  respect to G if 

and only if G~  F(x)  is  convex on the support of F. 

(2) F is  said to be star-shaped with  respect to G (F •< G)  if and only 

if F(0)  = G(0)  = 0,  G~  F(x)/x is  increasing in x > 0 on the support of F. 

(3) F is said to be r-ordered with  respect to G  (F -< G)   if and only if —  y, 

F(0)  = G(0)  = i and G~V(x)/x is  increasing  (decreasing)   in x positive 

(negative). 

(4) F is said to be tail-ordered with  respect to G  (F <; G)  if and only 

if F(0) = G(0)  = i- and G"  F(x)-x is  increasing on the support of F. 

It is  known that convex ordering implies star-ordering.    Further, when 

G(x)  =  l-e"'^(x > 0),  F < G is  equivalent to saying that F has  an  increasing 
~ c 

failure  rate  (IFR)  and F < G is  equivalent to saying that F has  an  increasing 

failure rate on the average (IFRA).    Of course,  if F is  IFR,  then it is also 

IFRA. 

Let TT,,...,7T.   have the associated absolutely continuous  distributions 

Fp...,  F. ,  respectively.    The best population is  defined in terms of a 

characteristic such as the mean or quantile of a given order.    Let Fj-j^-,  denote 

the distribution function of the best population.    We assume that Fr|^-| is 

stochastically larger than the rest and that F. -< G,  i  = l,...,k. 

Under the above setup,  Barlow and Gupta (1969)  proposed a procedure for 

selecting the population having the largest a-quantile  (0 < a <  1) when all 

the F.  are star-shaped with  respect to a known G.    Let T..   denote the jth 

order statistic based on n independent observations from IT.,  i  = l,...,k, 

where j  <  (n+l)a < j+1.    The procedure of Barlow and Gupta (1969)  is 
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RT^:     Select TT .   if and only  if 
ID 1 ,1 

I 
T.   . ^ c    max    T. I (22) 

I 

where c =  c(k,  P*, n, j)  is the largest constant in  (0,1)  for which the P*- 

condition is satisfied.    Tables for the constant c and the constant for the 

analogous procedure for selecting the population with the smallest a-quantile 

are given by Barlow,  Gupta and Panchapakesan  (1969)   for the special   case 

of exponential  G,i.e.   for the IFRA    family of distributions.    Another special 

case of G is the folded normal  obtained by folding N(0,a  )  at the origin, 

where a is assumed to be known.    The class of distributions which are star- 

shaped with  respect to the folded normal  is a subclass of IFRA distributions. 

Selection  in terms of quantiles  for this  restricted family was  considered by 

Gupta and Panchapakesan  (1975). , 

Barlow and Gupta (1969)  considered also the selection of the population 

with the largest median from a set of distributions that have lighter tails 

than a specified G.    The definition of F.  having a lighter tail   than G used 

by them implies  that F-   centered at its median is tail-ordered with  respect 

to G.    The procedure of Barlow and Gupta  (1969)  applies  equally to the 

problem of selecting the population with the largest median from a set of 

populations which,  centered at their respective medians,  are tail-ordered 

with  respect to G.    This has been discussed by Gupta and Panchapakesan  (1974) 

who have given the values of the constant when G is  the logistic distribution, 

G(x)  =  [l+e-'^]-''. ' 

Some important unified results were obtained by Gupta and Panchapakesan 

(1974).    They defined a general  partial  order relation called ii-ordering through 

a class of functions U = {h} and discussed a related selection problem.    The 

H-ordering includes the star- and tail-orderings as special  cases.    The 
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selection rule is of the type R, defined in (10) using a member h of ii. 

In Section 4.1, we mentioned about the general results of Gupta (1966). He 

dealt with three special cases of his results. Two of these are location 

and scale parameter cases. His third special case is really the case of 

a restricted family using H-ordering even though the description was not 

in terms of the partial ordering. 

4.8 Sequential Procedures , 

Barron (1968) and Barron and Gupta (1972) investigated a noneliminating 

type sequential procedure for selecting the population with the largest 

mean from k normal populations with unknown means e,,...,e, and common known 

2 
variance a  .    However, it was assumed that the successive differences of 

the ordered e- are known. The sampling for their procedure is done by taking 

one observation from each population at each stage. At any stage, each 

population that has not been so far classified as accepted or rejected, is 

subject to one of three possible decisions: accept, reject, or postpone 

classification. Sampling continues until all the populations are classified 

either as accepted or as rejected. All populations that are accepted constitute 

the selected subset. It should be noted that until all populations are 

classified, the sampling is made from all populations, previously classified 

or not. 

Swanepoel and Geertsema (1973) considered a sequential procedure for 

selecting the normal population with the largest mean from k populations, 

N(e-,a.)i where all the parameters are unknown. They defined a selection 

sequence using the idea of a confidence sequence introduced by Robbins (1970). 

For each n >^ 1, let B denote a subset of the k populations defined by n 

observations from each population. Any sequence (B } is a selection sequence if 
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Pr(7r,|^^ € B^ for all n ^ 1) > P* (23) 

for all 6i,...,B,. Let lS(n)l denote the size of the subset B and let r 

denote the number of populations tied for the best population. Then, for 

the selection sequence defined by Swanepoel and Geertsema, |S(n)| ^ r a.s. 

(almost surely) as n -> «>, and B = ■t'^fb_)^+]) »• • •'■^L-^ ^-S- for large n. 

The size of the selected subset can be restricted to a maximum of 

m (1 <^ m - k) by defining a stopping variable N as the first integer n >^  1 

such that |S(n) | ^ m. If r ^ m, then N < «> a.s. and the subset B^, (which 

contains at most m populations) includes the best population with a minimum 

probability P*. However, if r ^ m+1, then N = °° with positive probability. 

Gupta and Huang (1975b) discussed three sequential procedures of which 

two are parametric and the third is nonparametric. The nonparametric and one 

of the parametric procedures are of the nonelimination type. The goal of 

their parametric procedures is to select what they called mildly t best 

populations. Suppose that e,,...,e, are unknown location parameters of k 

given populations. Then v-  is called mildly t best if o. ^ '^rk-t+ll ~ ^* 

where A > 0 is specified. For t = 1, TT. has been called a superior population 

by Desu (1970) and a good population by Lehmann (1963). Gupta and Huang 

(1975b) have discussed their procedures in a general setup and obtained 

special results for selecting from normal populations in terms of their 

means and variances. Their nonparametric procedure is for selecting the 

population with the largest location parameter when the k populations have 

absolutely continuous distributions F(x-e.), i = l,...,k. It is assumed 

that F(') is symmetric about the origin and that the densities are Polya 

fequency functions of order 2 and differentiable almost everywhere. 

Carroll (1974) has discussed some asymptotically nonparametric sequential 

selection procedures. I 
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4.9    Other Developments 

In the early investigations,  detailed results were obtained only for 

procedures which used samples   of   a common size from the populations  under 

consideration.    Also,  in the case of selection in terms of the means  from 

k normal  populations,  the early  investigations  assumed that the variances 

are equal.    When the variances  are not equal   (that is,  under heteroscedasticity), 

the only trivial   case is when they are all   known and the sample sizes  are the 

same.    To handle various other situations that arise,  several  procedures were 

proposed and investigated. 

Let IT,,...,!!,   be k normal  populations with  unknown means  ei,...,e.   and 

2 2-2 
(known or unknown)  variances a-.,...,a. .    Let X.  and s.   denote the mean and 

the variance  (divisor n.-l)  of a random sample of size n.   from TT.,  i  = l,...,k. 

k k 
Let s^ =    I  (n.-l)s?/(N-k), where N =    I n.. 

i = l    ^ 1 = '' - 

Let us  first consider the case of known variances.    In describing the 

several  procedures, we have used the same letter d to denote the constant 

in each case.    This  constant d is the smallest positive constant for which 

the P*-condition is  satisfied.    Also,  if a  rather than a.   appears,  it it 

assumed that a-,  =...= a,   = a.     Gupta and W.  T.  Huang  (1974)  proposed the  rule 

R,-,:    Select T; .   if and only  if X.  >    max    X.  - -^ . 
'^ ' ■" " l<j<k    J      v/n. 

Later Gupta and D.  Y.  Huang(1976a)  proposed the rule 

RTQ:    Select IT.  if and only if X.  >    max  (X.-da/— + —). 
18 1 -^ 1— T-.i/n.      n- 

For the case of unequal  variances,  Gupta and Wong  (1976)  proposed the rule 

/ 2   2 

RTC,: Select TT. if and only if X. > max (X.-d/— + —-). 

Chen, Dudewicz and Lee (1976) proposed a rule assuming a to be unknown. In 

the case of known a, their rule would be 
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R„^: Select IT. if and only if X. > max - da/—- + - 

where a is nonnegative constant but usually chosen between nr-j-i and nr,-|, 

both inclusive. i 

For all the above procedures (R-jy through Rpn^' ^^^  respective authors 

have obtained lower bounds for the infimum of the PCS. For k = 2, Gupta and 

D. Y. Huang (1976a) have shown R-.g to be more efficient than R,y in terms of 

the supremum of the expected subset size. Berger and Gupta (1980) considered 

minimax subset selection rules using the criterion M = max   P('^c-i'i """^ 
l<j<k-l        ^^' 

selected).    They have shown that R^g>and R-jg   (when a, =...= a.   = a)  are 

minimax with  respect to M in the class of nonrandomized, just, and translation 

invariant rules which satisfy the P*-condition.    The rules R-.-, and R^g are not 

minimax,  in general. ' ,   ' 
■■-■". . i 

Now, let us consider the case of unknown variances. The counterparts 

of the rules R-.-,,  R-,g and R^Q were proposed by the respective authors where 

the new rules R^-,, Rio and Rpg are of the similar forms with s in the place 

of a; of course, the constant d will not have a different value in each 

case. Gupta and Wong (1976) proposed a rule R^g which selects TT^ if and 

only if ! 

X. ^ max X. - c max s.. 

As  in the case of known a.'s,  all   the authors  have given only lower bounds 

for the  infimum of the PCS.    Some comparisons of R|y,  R^g and R^Q are given 

by Chen,  Dudewicz and Lee  (1976). I 

When the variances are unknown and unequal, and the sample sizes are 

unequal,  Dudewicz and Dalai   (1975)  proposed a two-stage procedure for 

selecting the population with the largest mean under the indifference zone 
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formulation.    Let n„ be the first stage sample size for each population and 

n.  - n„  is the second stage sample size from -n.,  i  =  l,...,k.    Their procedure 

is based on the statistics X., where X.  is a weighted average based on all 

the n.  observations  from TT .,  i  =  l,...,k.    The weights are chosen subject 

to certain conditions.    They proposed a subset selection rule 

Ron:    Select TT .   if and only  if X.  >    max    X.  -  d 21 1 ^ n  - ^^.^^    j 

where d ^ 0.    For this procedure, the P*-condition is satisfied irrespective 

of the choice of the positive constant d.    So one has to impose some 

additional  restriction in order to have a meaningful  choice of d.    One 

possibility is to introduce a restriction on the expected subset size in 

some configuration of the means.     It is worth noting that a two-stage procedure 

is not necessary in the subset selection approach whereas  it is necessary 

in the indifference zone approach. 

5.     YEARS OF FURTHER STRIDES   (1975-1980) 

Although several   important contributions were made during this period, 

the foremost and the most dominant of these were to the development of 

the decision-theoretic approach to subset selection.    Besides Bayes 

procedures,  several minimax and r-minimax rules were derived.    The first 

paper on  locally optimal   rules appeared.    Several   contributions were made 

with  regard to classical  procedures  for specific families of distributions 

representing an outgrowth of the research in this direction from the previous 

period of main growth. 

5.1    Bayes Procedures 

In Section 4.3, we discussed the early developments of Bayes procedures 

using linear loss  functions.    The first papers to come out with nonlinear 
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loss functions are Bickel and Yahav (1977), Chernoff and Yahav (1977), 

Goel and Rubin (1977), and Gupta and Hsu (1978). They used different 

linear combinations of four components of loss, namely, (i) ICS(o,S), 

the simple loss due to an incorrect selection, which takes values 0 or 

1 according as a correct selection is or is not made, (ii) |S|, the size 

of the selected subset, (iii) Gr,-, - max e., which expresses a measure 

of loss in using in the future the populations that are selected, and (iii) 

Q   - ^ e./lS|, which is an 'average' loss in using in the future the populations 

that are selected. The components used in the linear ,• 

combination are:  (i) and (iv) by Bickel and Yahav (1977), (iii) and (iv) 

by Chernoff and Yahav (1977), (ii) and (iii) by Goel and Rubin (1977), 

and (i) and (ii) by Gupta and Hsu (1978).       | 

Goel and Rubin (1977) assumed that k distributions have densities 

and belong to a family with montone likelihood ratio property. The 

parametric vector o was assumed to be symmetric. They derived the Bayes 

rule under this setup and obtained further simplifications in the case of the 

prior  distribution of e being a mixture of i.i.d. random variables. 

They also derived an 'approximate' Bayes rule R, which selects larger 

subsets than the Bayes rule but is the Bayes rule for k = 2. This approximate 

Bayes rule, under a further assumption regarding the form of the posterior 

distribution of e., reduces to the classical procedure of Gupta (1956) except 

that the constant that is involved depends only on the cost per population. 

Goel and Rubin (1977) also discussed the special case of normal populations, 

? 2 
N(e.,a ), i = l,...,k, where a    is known and e has an exchangeable multivariate 

normal prior for all k. 
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Chernoff and Yahav (1977) considered selecting the population with the 

largest mean from k normal populations with means e,,...,e. and a common 

2 
known variance a   ,  where e has an exchangeable normal prior. They compared 

their Bayes procedure with the (random size) subset select^ion procedure of 

Gupta (1956) and the fixed size subset selection procedure of Desu and 

Sobel (1968). Their results were based on Monte Carlo studies of the 

integrated risks with respective to different exchangeable normal priors. 

Bickel and Yahav (1977) also considered k normal populations with 

2 
means e-,,...,e, and a common known variance a   .    They investigated the optimal 

solution when k goes to infinity under the assumption that the "empirical 

distributions" of the means 6., i = l,...,k, converge in a suitable sense 

to a smooth limiting probability distribution. Their asymptotic solution is: 

Select the populations that generated the last 100x„ percent of the order 

statistics, where XQ depends on the limiting distribution of the y. and on the 

penalty associated with a wrong decision. 

Gupta and Hsu (1978) studied the comparative performances of the maximum 

type procedure of Gupta (1956) and the average type procedure of Seal (1955) 

with their Bayes procedure in the case of normal means with exchangeable 

normal priors. Their Monte Carlo results indicate that the maximum type 

procedures do almost as well as the Bayes procedures. Similar results have 

been found under different loss functions by Chernoff and Yahav (1977), 

and Hsu (1977). These studies are useful because an easy-to-implement 

procedure whose performance is close to that of Bayes procedure is most 

welcome from a practical point of view, Bayes procedures typically require 

numerical integrations to implement them and are difficult to compute 

explicitly. :  . , 

In other developments, Gupta and Hsu (1977) using the same loss function 

as in their 1978 paper established the monotonicity of Bayes subset selection 



33 

procedures, under certain generalized monotone likelihood ratio property 

assumption, for a restricted class of priors. Miescke (1979) assumed 

certain additive loss functions and showed that, in the normal case with ' 

symmetric priors, the Gupta procedure is the limit of Bayes rules as the 

sample size tends to infinity. I 

5.2 Minimax and r-minimax Rules      "      ' • 

For the class of subset selection rules for which the PCS is at least 

P*, Berger (1979) investigated minimaxity taking the loss as measured by 

the subset size. Under certain mild conditions, he showed that the minimax 

value cannot be less than kP*. Applying this to locatipn and scale problems, 

he showed that, under the monotone likelihood ratio assumption, the rules of 

Gupta (1965) are minimax. He also established some necessary conditions 

for minimaxity. One of these conditions is related to (12) which is an 

important property of just selection rules. It should be noted that if a 

rule is minimax with respect to the subset size |S|, then it is minimax also 

with respect to |S'|, where S' consists of all the nonbest populations that 

are selected. 

Berger and Gupta (1980) obtained minimax rules in the class of nonrandomized, 

just, and invariant rules when the risk is measured by the maximum probability 

of including a nonbest population. These rules are of the form proposed and 

studied by Gupta (1965) in location and scale parameter problems. Using their 

results, Berger and Gupta (1980) examined the minimaxity of several rules for 

the normal means problem when the variances are known but not necessarily 

equal and the sample sizes are unequal. We have referred to these results 

in Section 4.9. ■-• i 

Bj0rnstad (1980) compared three minimax procedures for the normal 

2 
means problem where the common known variance a    =1. Let e,,...,e. denote 

the means. The three procedures are the maximum type procedure of Gupta 
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(1956),  the average type procedure of Seal   (1955)  and a procedure of 

Studden  (1957).    The performances of these three were compared by  using 

the expected number of bad populations  (that is,  those for which 

0.   < Or.-|-A, A ^ 0 given)  as  the criterion, while controlling the PCS 

when there  is  only one good population.     The numerical   comparisons made 

for several   slippage configurations  showed that the average type procedure 

is  inferior to the other two.    While these two other rules  seem quite 

comparable,  the maximum type rule performs better when A  is  small. 

The use of partial  or incomplete prior information in statistical 

inference has  led to the so-called r-minimax criterion, a term 

initially  used by Blum and Rosenblatt  (1967).    The basic idea of the 

criterion,  however,  is  due to Robbins  (1951).    Here we assume that the 

prior distribution is a member of the subset r of the class  of all  priors. 

The r-minimax rule is obtained by minimizing the maximum expected risk over 

r.    When r  consists of a single prior,   we get the Bayes  rule for that 

prior.    On the other hand,  if r consists of all  priors,  then we get the 

usual  minimax rule. 

Gupta and Huang  (1977)   derived a r-minimax procedure for selecting the 

best population.     Let T:-.,...,IU   be k populations with  densities  f    ,  i  =  l,...,k, 
""i 

respectively.     Define x.  =    max    x.., where x..  is a measure of separation 
^  l<j<k ^^       ■'•^ 

between TT. and u..    Let Q.  =  {elx- < Xp,}. i = l,...,k, where Xn is a aiven IJ        l'\/l    U U" 
constant. The parameter space Q  is partitioned into iu  U Q-.  U...U ii., 

where Q^  can possibly be the empty set. The population TT. such that 

T. = min X- is called the best population. Here !„ is appropriately chosen 

so that a. corresponds to configurations where n.   is the best, i = l,...,k. 

When 0 € 'J.Q,  selection of any one of the populations is considered a correct 
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selection.     For deriving their r-minimax rule,  Gupta and Huang  (1977) 

assumed that r {p(e)l/ dp(e) q.,  i  =  l,...,k}, where p(e)   is a prior 

distribution and q,,...,q,   are nonnegative and    y q- i 1. 

Gupta and Kim (1980)   considered minimax and r-minimax rules for 

partitioning k populations 7T,,...,TT,   in comparison with a standard or 

a control  Tr„.    Let IT.  have density f^-(x-e.), where f.   is symmetric about 

the origin and is strongly unimodal   (that is,  f^.  is  log-concave on the real 

line).    Any population TT.   is superior,  equivalent,  or inferior to TT„ 

according as  e--9Q i A,  or -A < e.j-9g < A, or 9.J-0Q 1 -A, where A > 0 is 

given.     Gupta and   Kim     (1980)   under appropriate  losses  for misclassifications 

of the populations  derived r-minimax and minimax rules  in the known    e^ case 

as well  as  the unknown  o^  case.    When  o„  is  unknown,  attention was  restricted 

to the class of rules  for which the decision about v.  depends only on the 

observations  from TT.   and 7T„,  i  =  l,...,k. 

5.3    Construction of Optima! Selection Procedures and an Essentially 

Complete Class I 

Gupta and Huang  (1980a)  obtained a selection procedure under certain 

optimality conditions.    Though their results  are obtained in a general 

setup, we will   describe it in terms of the normal  means problem for simplicity. 

Let 1]-.,...,V,   be normal  populations with  unknown means  ei,...,9,   and a common 

variance a    =1.    The population associated with the largest e.  is the best 

population.    A selection procedure  is  specified by the individual  selection 

probabilities  for the populations.    Gupta and Huang  (1980a)  derived an optimal 

rule in the class of rules  for which the PCS is at least Y(0 < 7 <  1)  by 

minimizing the supremum of the expected subset size.     In the general  setup, 

the  result requires  a generalized version of the monotone likelihood ratio 
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for the multidimensional case. 

Gupta and Huang (1980b) considered the class c of rules for which 

the size of the selected subset is controlled when the distributions are 

identical. The goal is to obtain a rule in this class which maximizes 

the infimum of the PCS over the parameter space Q.    Under certain assump- 

tions, Gupta and Huang (1980b) obtained an essentially complete class of 

rules for this problem. In this regard, a rule 6-. is defined to be as 

good as 6^ if inf P(CS|6-,) >_  inf P(CSl6„) where both 6-, and 6„ belong to 

the class C. The essentially complete class obtained by Gupta and Huang 

is the class of monotone selection procedures. If we are having observations 

x-,,...,x, from k populations with densities f(x-6.), i = l,...,k, let 

y^-j = x^-Xj, j = l,...,k; j T i. Let y. = (y. ^,... ,y. ^), and let 5. denote 

the individual selection probability for IT., i = l,...,k. Then the selection 

rule 6 = (6,,...,6, ) is monotone if for any i and j, for fixed y. , r = 1,...,k; 

y i  ij> <5.(y.) is nondecreasing in y... ' 

5.4 Locally Optimal Subset Selection Rules 

Gupta, Huang and Nagel (1979) were the first to investigate locally 

optimal subset selection rules. They were interested in obtaining such 

rules based on ranks while still assuming that the distributions associated 

with the populations were known. This is appealing especially in situations 

in which the order of the observations are easily available than the actual 

measurements themselves due to excessive cost or other physical constraints. 

Let f(x,6.) be the density associated with TT., 6. £ @ i = l,...,k, 

where © is an interval containing the origin. Let A = (A,,...,AJ.) denote 

the rank configuration of the pooled sample of N = kn observations obtained 

by taking a sample of size n from each population. Here A. = j means that 
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the  ith smallest observation in the pooled sample came from rr        Let n^ = 

if'-.    6,  =...= e, }.    The goal   is to derive a permutation-invariant rule 6 

based on the rank configuration A such that | 

inf    P  (CS|6,A)  = P* ' ' .. (24) 

subject to the condition: 

maximize Pg(CS|6,A) for all e 6 A^  '     ' (25) 

where A^. denotes a neighborhood of any o„ € ^^Q. Since the distribution of 

the ranks does not depend on the underlying distributions when o 6 u^,  the 

condition (24) implies that the PCS is constant for 3 e  f^Q. So A^ can be 

taken as a neighborhood of e^ = (0,...,0). Gupta, Huang and Nagel (1979) 

derived a locally optimal (in the sense of (25)) rule under certain regularity 

conditions on f(x,e). If f(x,e) =  e"^^"®V[1+e"^^"^h^, the logistic density, 

their rule becomes: Select TT. if and only if R. >_ c, where R^ is the rank-sum 

statistic for the sample from TT^ , i = l,...,k. This is the procedure R-i^ 

defined by (21) of Gupta and McDonald (1970). 

Some other locally optimal subset selection rules with different optimality 

criteria have been recently obtained by Huang and Panchapakesan (1982b) and 

Huang, Panchapakesan and Tseng (1984). These will be discussed in the next 

section. I • 

5.5 Modified Goal for Subset Selection, and a Complete Ranking Formulation 

In Section 4.2, we discussed the restricted subset selection formulation 

of Santner (1975) whose aim was to restrict the size of the selected subset 

by an upper bound m £ k-1. Huang and Panchapakesan (1976) studied a modified 

formulation in which besides controlling the PCS an upper bound g e  (0, k-1] 

is imposed on the supremum of the expected subset size. Whenever the 
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parametric vector e =  (e-,,...,e,)  belongs to a preference zone fi.^ defined 

appropriately for a specified 6*.    The treatment of the problem by Huang and 

Panchapakesan  (1976)  is  in a general  setup that includes  location and 

scale parameter cases.    As  in the restricted subset size formulation of 

Santner (1975), one has to determine a constant associated with the rule as 

well  as  the smallest sample size needed to meet the requirements.    Specific 

application to selection in terms of the treatment effects  in a two-way 

layout has  been given  in Huang and Panchapakesan  (1976). 

In another paper, Huang and Panchapakesan  (1978)  have considered a 

subset selection formulation of the complete ranking problem.     Let 

ei,...,e.   be the unknown parameters of k populations.    The interest is  in 

ranking the k populations according to their e-values.    Any permutation 

of the set of integers  {l,2,...,k} corresponds to a ranking of the populations. 

Huang and Panchapakesan  (1978)  considered the problem of selecting a nonempty 

subset (of a random size)  of all  the k!  possible permutations  such that the 

correct ranking is  included in the selected subset of permutations with a 

minimum probability P* e  (1/k!,  1).    They have discussed location and scale 

parameter cases.     If Xi,...,X,   are the observations  from TT-,,...,TT,   with 

densities f(x-e-)5  i  = l,...,k,  the procedure of Huang and Panchapakesan 

(1978)   is 

R22:     Include the ranking  (i-. ,ip,... ,i|^)  in the selected subset if 

and only if 

max      max (X.  -X.   ) £ d, (26) 
2£S£k l£r£s      r      s 

where d is  the smallest positive constant for which the P*-condition is 

satisfied.    The infimum of the PCS is  attained when e,  =...= e,. 
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5.6    Entropy-based Selection 

Selection in terms of an  information measure was  first considered 

by Gupta and Huang  (1976b)  and Gupta and Wong (1977a).    The former paper 

was  concerned with binomial  populations and the latter with multinomial 

populations.    The significance of these papers  is  due not only to the 

importance of information-theoretic measures  in practice but also to the 

illustration of the use of the concepts of majorization and Schur functions 

in obtaining     probability   inequalities in selection problems. 

Let TT-,,...,::,   be k multinomial  populations each with m cells and let 

the unknown cell-probabilities of IT.  be p.i,...,p.   :  i  = l,...,k.    The 

Shannon entropy function associated with TT.  is H.  E H(p.i,... ,p.. ) = 

m 
-    I    p.  log p..    This  function is a measure of the uncertainty with  regard 

j = 1    •^ '^ ^^ I 

to the nature of the outcomes  from -n.,   i  = 1,...,  k.    The populations  are to 

be ranked in terms of the entropy function.    For m = 2,  the problem of 

selecting the population with the largest H.   reduces to that of selecting 

the binomial  population associated with the largest i|;(p.) = -6-  log e. 

-(1-0.)log(l-e.)5 where e.   is the success probability.    Gupta and Huang 

(1976b)  studied a selection rule in this case.    Their rule is 

Ro-,:    Select IT.   if and only if I 23 1 -^ 

X. X. 
4'(/) i   max    >];(/)  - d, ! (27) 

where X.   is the number of successes  in n trials associated with IT., 

X.               X.          X. 
i|j(—)  = H. (—,  1 ), and d = d(k,n,P*)  is the smallest nonnegative constant 

such that 0 < d £ i|j([n/2]/n).    Here [n/2] denotes the largest integer <_ n/2. 

For this  rule, the infimum of the PCS takes place when e,  =...= e.   = e. 
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However, as in the case of R^ of Section 3, the common value of 9 for which 

the infimum is attained is not known. Gupta and Huang (1976b) have obtained 

conservative value of d as was done by Gupta, Huang and Huang (1976) in the 

case of Ry. 

To discuss the general case of m ^ 2, we need the following definitions. 

m 
Let a = (ap...,a^) and l\^ =    I    ar-j-i' where ar-i-, £.. .£ ar -, denote the 

ordered components. 

Definitions 4.2. A vector a = (a.,...,a ) is said to majorize another —  ^      ' i'  ' m —^  

vector b = (b-,,...,b^) of same dimension (written a > b or b -< a) if A > B 
'vl m % ^ ^        r^      %' r—    r 

for r = 2,...,m,  and A-,  = B,.    A function f is said to be Schur-convex 

(Schur-concave)  is  f(x) ^f(x')   (f(x) £ f(x')) whenever x> x'. 

In our selection problem, we assume that there is a population whose 

associated vector of cell-probabilities  is majorized by the associated 

vector of any other population.    Such a population will  have the largest H. 

because the entropy function is Schur-concave.    Gupta and Wong  (1977a) 

proposed the rule 

R24:    Select IT.  if and only if ' 

• ^(^,...,^)^   max   /Jl,.../-M)  .  d, (28) 

where X^i,...,X^^ are the cell-counts based on n independent observations  from 

•^-j   (i  =  l,...,k), cp  is a Schur-concave function,  and d = d(k,m,n,P*)   is  the 

smallest positive constant for which the P*-condition is satisfied.    Gupta 

and Wong  (1977a)  obtained a conservative value of d using the idea of 

conditioning as  in the paper of Gupta and Huang  (1976b). 
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5.7 Other Developments '     - 

Here we discuss several developments dealing with various aspects of 

subset selection procedures discussed in earlier sections. These relate to 

selection procedures for Poisson processes, selection from restricted families, 

selection procedures based on medians, robust nonparametric procedures, selecting 

a good subset of the predictor variables, and subset selection used for screening 

in a two-stage procedure for selecting one population as the best. 

Selection procedures for Poisson processes. Let -^^,...,7!^  be k Poisson 

processes with unknown mean rates M-|,...,y|^, respectively. Gupta and Wong 

(1977b) investigated four different procedures for selecting the process with 

the largest y.. Two of these procedures are based on the number of occurrences 

X.{tp,), i = l,...,k, during time t^ from these processes and are essentially 

the rules R-,-, defined by (16) and its conditional analogue, both discussed 

in Section 4.5. A third procedure is ,   ... 

R^^: Observe the processes continuously until max X.(t) = N. 
l<i<k 

Select TT.   if and only if 

X.(t)  > N-c (29) 

where N  is  a positive integer specified in advance,  and c = c(k,P*,N)  is 

the smallest nonnegative integer for which the P*-condition is  satisfied. 

The infimum of the PCS for the rule R25 takes place when u-j  =...= M^ = v and 

is  independent of the common value y.    The constant c is the smallest integer 
.1 

(0 £ c £ N) which satisfies ,1 

/[l-G^(t)]^"^dG^_^(t)  > P*, (30) 

. iSfe*. t 
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where G^(t) is the cdf of the gamma distribution with unit scale parameter 

and shape parameter r. ^ * 

The fourth procedure of Gupta and Wong (1977b) is based on observing the 

processes at successive intervals of time, t = 1,2,..., until the first time    ' 

tg when X-ltg) >_  N for some i. The selection procedure is based on the 

waiting times for N and N-c occurrences, where c is the constant of the 

rule R2g. The details of this procedure are omitted here. The infimum of 

the PCS for this rule is the same as in the case of R^r, namely, the left- 

hand side of (30). 

Selection from restricted families. Let 7i,,...,n, be k given populations 

with distributions F-.,...,F. , respectively. It is assumed that there is one 

among them which is stochastically larger than any of the rest. This popula- 

tion, denoted by Fr, n, is defined to be the best. It is also assumed that 

Fr,-| <  G and that all our distributions are absolutely continuous with the 

the positive real line as the support. Let X. ; (Y. ) denote the jth 

order statistic in a random sample of size n from F.(G). Define 

:■ ■^ = J,¥j.n-T, = i,=jxj;I. i = i.....k, (31) 

where  r (1 ^ r £ n)  is a fixed integer. 

aj  = gG"^(^)-gG"^(i),    j  =  l,...,r-l, 

a, = gG"^^), 

and g is the density associated with G. 

(32) 

If G(y)  =  1-e ^, y ^ 0, then a. =  1/n for j = l,...,r-l,  and a    =  (n-r+l)/n. 

Thus nT.  = x\^l +...+ xj^^^  ^ + (n-r+1 )x[,^|, which  is the well-known total   life 1 ','' r-i,ii r,n 

statistic  until   the  rth  failure  from F.. 
1 
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Now,  for selecting a subset containing Fj-|^-|,  Gupta and Lu (1979)  proposed 

the rule ,....,, 

Rpg:    Select TT.  if and only if I 
t 

T. 21 c    max    T., | (33) 
l£J£k      J I 

where c is  the largest number in  (0,1)  for which the P*-condition is satisfied. 

They have shown that,  if a.  > 0 for j  =  1,...,r,  g(0) £ 1  and a   ^ c, then 

inf P(CS|R    )  = / Glf"^(y/c)dG^(y), (34) 

where G^ is the cdf of T, and U is the space of all  the k-tuples  (F-,,...,F, ) 

such that there is one among them which is stochastically larger than the 

others and is  convex with respect to G.    Thus, the constant c is chosen to 

-1   r-1 
be the largest number in  (0,1)  such that gG    (-^—^) ^ c and the right-hand 

side of (34) is equal to P*. For the special case of G(y) = l-e"-^, y >^ 0, 

the condition a. 21 c becomes c <_ (n-r+l)/n. This special case is a slight 

generalization of the results of Patel   (1976). 

Hooper and Santner (1979)  considered selection of good populations  in 

terms of a-quantiles  for star- and tail-ordered distributions using the 

restricted subset size approach discussed in Section 4.2.    Let TT.  have the 

distribution F.   and let Fr.-, denote the distribution having the ith smallest 

a-quantile.     Denoting the a-quantile of any distribution F by x  (F), ir- 

is  called a good population if x^(F^)  > c*x^(Fr|^_^_^^i), 0 <  c* <  1,  in the 

case of star-ordered families, and if x (F.)  > x (Fr,   ^.T-,)  - d*,  d* > 0, 
a     1 a     LK-t+IJ 

in the case of tail-ordered families.    The goal  of Hooper and Santner (1979)  is to 

select a subset of size not exceeding m (1 ^ m < k-1)  that contains at least 

one good population. | 

.'lift.' ». 
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Selection procedures based on medians. Gupta and Leong (1979), Gupta 

and Singh (1980), and Lorenzen and McDonald (1981) investigated subset selection 

procedures based on sample medians for selecting the population with the 

largest location parameter e. from k given populations belonging to several 

specific location parameter families. Let T. be the sample median based on 

n independent observations ir., i = l,...,k. Then the procedure studied by 

all the above authors is 

Rgy: Select TT^ if and only if T. > max T.-d, . (35) 
ll.J£k    -^ 

where d is the smallest nonnegative number for which the P*-condition is satis- 

fied. 

Gupta and Leong  (1979)  considered the case of double exponential 

populations, namely,  f(x-e.)  = 1 exp[-[x-e.1],  i  =  l,...,k.    Gupta and Singh 

(1980)  considered normal  populations with means  e^,...,e|^, and a common known 

variance.    They also studied performance characteristics of R^^ in the double 

exponential   case.    Lorenzen and McDonald (1981)  discussed the case of logistic 

distributions with means  e^,...,e|^ and a common known variance.    Gupta and 

Singh  (1980)  made a numerical  study of the efficiency of R^y compared to the 

Gupta procedure based on sample means.    Their study  indicates  that the 

procedure based on sample medians,  though ordinarily less  efficient than 

the procedure based on sample means,  does better when the normal  populations 

are contaminated.    Lorenzen and McDonald (1981)  compared R^^ with the procedure 

based on means, and the rank-sum procedure  (in the case of k = 2)  of Gupta and 

McDonald (1970).    The general  nature of their findings are that the median 

procedure does better than the means  procedure when there is  contamination and 

it does better than the rank procedure when the e.  are believed to be roughly 

in an equally spaced configuration. 



Robust nonparametric procedures.     In Section 4.6, we discussed the 

difficulty  in establishing the LFC for maximum type procedures based on 

ranks.    Hsu (1980)  proposed a rule based on pairwise  (rather than joint) 

ranking of the samples  for which the PCS is minimized when the distributions 

are identical.    Let TT,,...,TT,   have distributions  F    ,...,F    ,  respectively. 

Let X. ■,,...,X.    denote the observations  from n.,  i  =  l,...,k.    For 1 £ i, j  <_ k, 

i  =1= j,  define R.   ^  to be rank-sum of the sample from TT .   in the combined 

sample from IT.  and IT.;  also,  let d'jls  <...< D'^\    denote the n    ordered 
1 J (1) (^^)    , 

differences  X.  -X.,,  a,  e =  l,...,n.    Then the rule of Hsu (1980)   is 
la     Jg 

■ 

Ron:    Select TT .   if and only if ■    .     . 
CO I I . , ,   " 

/ • \ ' 
T.   >^    max    T.  and/or max R.       <  r, ■■ (36) 

where T.  = j^  D^^/p and .      !   " ^^ "   ' '   ■   '; 

°(k+l)        .     . ^^"^= ^'"^ 

(°(k)^D(k+l))/2      if n^ = 2k. _; 

Here D" , = 0.    The constant r =  r(n,P*)  is the smallest integer such that 

P„{max RP^ ^ r} £ 1-P*, (37) 

where P„ denotes the probability evaluated when the distributions are identical 

It should be pointed out that D'^^ , is  the usual  Hodges-Lehmann estimator of 

e.-e-; the averaged estimator T.  of e- was  introduced by Lehmann (1963b)  to 

make the estimators  compatible. , 

In another paper,  Hsu (1981a) proposed a class of nonparametric subset 

selection procedures for unequal  sample sizes situations which are based on 

med 
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two-sample  linear rank statistics. 

Selection of variables  in linear regression.    Applications of regression 

analysis  in practice for predict"ion purposes  often  involve a  large number of 

independent variables.    In such situations, a subset of these predictor 

variables may be sufficient for "adequate"  prediction.     In this sense,  there 

arises a problem of selecting a  "good"  subset of these variables.     For nice 

reviews of several   criteria and techniques that have been  used in practice, 

reference may be made to Hocking  (1976)  and Thompson  (1978a,b).    The ad hoc 

procedures  described in the papers of Hocking and Thompson, however, were not 

designed to select a good subset with any control  on the probability of 

selecting the important variables.    The first papers to formulate this problem 

in the framework of Gupta's subset selection were McCabe and Arvesen  (1974), 

and Arvesen and McCabe  (1975). 

Consider the linear model .        - ; 

where X is  an Nxp known matrix of rank p <^ N,  3  is  a pxl  parameter vector, 
'\^ 

2 
and 6 '^  N(0, a 1^),  l^  being an identity matrix. The model (38) which includes 

p independent variables is considered to be the "true" model. Consider all 

k = (^) reduced models that are obtained by retaining t out of the p variables. 

The comparisons of these reduced models are made under the true model assumptions. 

2    2 
Let a-,,...,a, denote the error variances of these reduced models. The best 

subset of the p variables is defined to be the set for which the error variance 

2 
of the corresponding reduced model is ar-,-|. We will call this model the best 

reduced model of size t. Arvesen and McCabe (1975) proposed a rule to select a 

nonempty subset of all reduced models of size t so that the best reduced model 
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is  included with a minimum guaranteed probability P*.    They proposed a 

scale type procedure based on the error sums of squares associated with 

these models.    However,  these sums of squares are not independent and an 

exact evaluation of the infimum of the PCS is  difficult.      Arvesen and 

McCabe showed that the PCS is asymptotically  (N -> «=)  minimized when 3i  =...= 6    = 0. 

Still  the evaluation of the constant associated with the procedure is not simple. 

An algorithm for determining the constant using Monte Carlo methods is 

given by McCabe and Arvesen  (1974). 

Subset selection for screening in two-stage procedures.    Suppose we have 

k normal  populations with unknown means  0,,...,e,   and a common variance a  . 

The population associated with the largest e.   is  the best population.     For 

selecting a single population as the best under the indifference zone 

formulation of Bechhofer (1954), a two-stage procedure is necessary if a 

is  unknown.    The main purpose of the first stage is to obtain an estimate of 

2 
a    so that the total  sample size necessary to satisfy the P*-condition can 

2 
be determined.     If a    is  known,  then the single stage procedure of Bechhofer 

(1954)  applies.    However,   in this  latter situation, one can  use a two-stage 

procedure where the first stage is meant to effectively screen out inferior 

populations.    Obviously,  this  is  done by using a subset selection procedure 

designed to retain superior populations.    Early investigations of Cohen (1959) 

and Alam (1970) were mostly confined to the special  case of k = 2.    The 

1977 paper of Tamhane and Bechhofer for k _>_ 2 renewed the interest in such 

procedures.    Their procedure is described below.      I 
'[    '   ■ ■■■■.,■ 

R„Q:    Take a  first-stage sample of n,  observations  from each  population. 

Retain the populations TT.  for which X.  >_   max    X--ha, where the X.  are the 

sample means and h > 0 is  to be specified prior to the experimentation. 
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Let S denote the set of populations thus retained.  If S consists of only one 

population, stop sampling and select this population. If S consists of more than 

one population, take an additional sample of size n^ from each population in S. 

Select the population associated with the largest Y., where the Y. are the means 

based on n^ + n^ observations for those populations in S. 

It should be noted that the fixed-sample procedure of Bechhofer (1954) 

is obtained as a special case of R^g by letting h = 0 or co. por the rule R^g, 

PCS should be guaranteed to be at least P* whenever e = (e-,,...,e, ) belongs 

to Q^^ =  {e: ^[k]"^[|<-l] - ^*^-     ^^'^ ^"^ given (k, 6*, P*), there are an 

infinite number of combinations of (n-,, n^, h) which will give the above 

guarantee for PCS. Tamhane and Bechhofer (1977) used a minimax criterion, 

namely, minimize sup E(T) subject to inf PCS, where T = kn-, + [Sln^,, the total 

%^ 
sample size required.    However,  the LFC is shown to be em =..,= er,   n = 6r, T6' 

LU [k-lj        [kj 

only in the case of k - 2.    For k > 2, Tamhane and Bechhofer (1977)  obtained 

conservative solution by taking the infimum over n^^ of a lower bound of the 

PCS;  in a subsequent paper, Tamhane and Bechhofer (1979)  provided an  improved 

yet conservative solution by using a sharper lower bound for the PCS.    Their 

numerical  study shows that the procedure R„Q  is  very effective as a screening 

procedure,  especially as  k increases. 
2 

We initially pointed out that, when a    is  unknown,  the first stage of a 

two-stage procedure is  utilized for estimating a    and determining the total 

sample size.    If one wants to further use the idea of screening,  it can be 

done by a three-stage procedure where the first stage is  used to determine 

the additional  sample sizes necessary in the subsequent stages,  the second 

stage is  used to eliminate inferior populations by a subset rule,  and the 

third stage (if necessary)  to make the final   decision.    Such procedures have 

been studied by Tamhane (1976)  and Hochberg and Marcus  (1981). 



6. RECENT DEVELOPMENTS  ! 

Developments that took place in the last three or four years constitute 

not only continuation of research on several topics that we discussed in the 

preceding sections, but also some new aspects and directions, 

' I 

6.1    Decision-Theoretic Developments j 

In this subsection, we will  discuss minimax, r-minimax, Bayes and 

empirical  Bayes procedures for three different goals, namely,   (i)  selecting 

the best population,   (ii)  selecting good populations,  and (iii)  selecting 

good populations  in comparison to a control.    However,  results  relating to 

two-stage and sequential  procedures will  be discussed separately along with 

some results for classical  two-stage procedures.    Also, some locally optimal 

selection procedures will  be reviewed elsewhere in this section. 

Selecting the best populations.    Let Tr,,...,TT    have densities f(x,e.), 

where e.  belongs to an interval  of the real  line,  i  = l,...,k.     It is 

assumed that f(x,e)  has a montone likelihood ratio in x.    Bj^rnstad (1981a) 

considered the goal  of selecting the t best populations,  namely,  those 

associated with  t largest e.'s.    Here the decision space consists of all 

subsets of {l,...,k} of size >_ t.    Bj^rnstad considered nonnegative,  semi- 

additive loss  functions of the form L(e,d)  = alldl)  7    L.(G), where d denotes 
ild    '  '^ 

the subset selected and   jdi   its size.    Here a(|d|)  > 0 and L.(e)  > 0.    Bj0rnstad 

(1981a)  has shown that,  under certain conditions, the procedure that selects 

the t populations  corresponding to the t largest X.'s  (X.   is an observation 

from ji.) minimizes  the risk uniformly  in o  in the class of permutation-  ' 

invariant procedures.    He has also shown a class of likelihood-ratio type 

procedures to be admissible for monotone loss functions. 
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In Section 5.1, we discussed asymptotically optimal  rules of Bickel 

and Yahav (1977)  for selecting the best population.     In a recent paper, 

Bickel  and Yahav (1982)  showed that the same ru^es also minimize the 

asymptotic risk for a wide class of smooth  "monotone"  loss  functions within 

the class of procedures with  PCS bounded below by a specified P*.    They 

also showed that Gupta's maximum type rule with  P* as the minimum PCS  is 

'asymptotically optimal within the same class of procedures  and for the same 

class of loss  functions  for essentially any prior for which the empirical 

d.f.  of the means  tends to a fixed d.f. with prior probability 1,  and whose 

essential  supremum is finite'. 

For selecting the best population in a randomized complete block design, 

Huang and Tseng  (1983)  have obtained r-minimax procedures. 

Selecting good populations.    Let Tri,...,7T,   be normal  populations with 

2 
unknown means  6-|,...,e,   and a common known variance a  .    A population u-  is 

said to be good if e.  >_ erLi-A,  A > 0 given,  and bad otherwise.    Gupta and 

Kim (1981)  considered the loss function 

i6d '-  -" i^d '-  -■ 

where d is the selected subset of {l,...,k},  Lp is  nonincreasing,  L„ is 

nondecreasing,  Ln(y)  = 0 for y ^i 0»  and Lp(y)  = 0 for y < 0.    Assuming that 

e has an exchangeable normal  prior,  Gupta and Kim (1981)  have shown that 

Gupta's maximum type rules  are extended Bayes.     For a simple loss  function, 

they have made Monte Carlo comparisons of the maximum type and the average 

type rules with the Bayes  rule.    As  in the studies of Chernoff and Yahav 

(1977),  and Gupta and Hsu (1978),  the study of Gupta and Kim (1981)   indicate 

that the maximum type rules perform well. 
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Bj0rnstad (1981b) developed a theory for a class of procedures, 

called Schur procedures, and applied it to certain minimax problems. Let 

Tr,,...,Tr, have densities f{x-e.), i = l,...,k. We assume that f(x-e) has 

monotone likelihood ratio in x. Given the observation x = (XT,...,X, ), a %      M k 

selection rule is defined by 6(x) = (S-i (x),... ,6, (x)), where 6.(x) denotes 

the individual selection probability for rr., 1 = 1,... ,k. We consider the 

class c of just, permutation-invariant and translation-invariant procedures. 

Now,  5 6 C if and only  if there exists a permutation-symmetric function 

k-1 
6':     IR        -> IR , which  is nonincreasing in each component such that for 

every i  6.(x) = 6' (x,-x.,... ,x.  TX. ,x.,-.-x.,... ,x,-x.).    A subset selection 

procedure s =  {&.,...,6.)  is said to be a Schur-procedure if 6 g c and 6' 

is  a Schur-concave  function.    Bj0rnstad (1981b)  has obtained several 

properties of Schur procedures.    Subject to controlling the minimum expected 

number of good populations selected or the probability that the best 

population is  in the selected subset, he has obtained minimax procedures 

using the criterion of minimizing the expected number of bad populations  (or 

a similar criterion). ■•'■        . , 

Selecting good populations  compared to a control.    Let 7T,,..,Tr.   be the 

populations that are compared with the control 7r„.    Let TT .  be characterized 

by e.,  i  = 0,1,...,k.     Gupta and Hsiao  (1981)  considered the case of normal 

populations with  unknown means  e^,Q-.,...,o,   and known variances.    They called 

a population TT.   good if   le.-e„|   <_ A and bad if  !o.-o„]   >_ A+€, where A  > 0 and 

6 > 0 are specified constants.    They used a simple additive loss  function 

which  is made up of loss L-,  for every good population that is not selected, 

and loss L^ for every bad population that is  included.    They considered both 

cases of e^, known and unknown and obtained minimax,  r-minimax and Bayes 

rules.    Their Bayes  rule was  derived under a normal  prior for 6. 
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In another paper, Gupta and Hsiao (1983) considered uniform distributions 

on (0,G.), i = 0,1,...,k. They defined a population TT. to be good if o. > e„ 
1 1     ^      1   0 

and bad otherwise. They considered the loss function L(e,s ) = L-, I  (o.-e„) 
'^       i€A ^ " 

+ Ly    I  (e„-e.), where s denotes the selected subset, A denotes the set of 
^ ieB ^ ^ 

good populations that are not selected, and B denotes the set of bad populations 

that are selected. Gupta and Hsiao (1983) derived empirical Bayes rules in 

both cases of o„ known and unknown. 

Gupta and Leu(1983a) also considered selection from uniform distributions 

on (0,9.), i = 0,1,...,k. But they defined it. to be good if |e.-o„i < A and 

bad otherwise. They derived Bayes and empirical Bayes procedures (both 6„ 

known and unknown cases) using a loss function L(e,s) given by 

L(e,s) = ^^^c,(e„-.-e,)I,^^^^^.^,(e,) +    : 

I c.(en+A-G,)I,,, _ _ ..x(e,). 
les '4'>"0'"-°i^^{eQ<e.<eQ+A}^"i 

where s is the selected subset, c^'s are positive constants, and I is the  [ 

indicator function. 

5.2 Isotonic Procedures 

In this section as well as in the previous sections, we have discussed 

the problem of comparing several populations with a control and the contributions 

of several authors in this respect. It has been assumed by these authors that 

there is no information about the ordering of the unknown parameters o. of 

these populations. In some situations, we may have partial prior information 
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in the form of a simple of partial  order relationship among the unknown 

parameters.    This  is typical,  for example,  in experiments  involving different 

dose levels of a drug where the treatment effects will  have a known ordering. 

Let Tr,,...,TT,   be the k populations that are compared with the control  population 

IFQ.    Let TT^.  have distribution F^  ,  i  = 0,l,...,k.    Then it is assumed that the 

e. are unknown,  but it is  known that e-, £ e^ 1---1 Si.-    A population IT. 

(i  =  l,...,k)   is  defined to be good if (j.   >  o^ and bad otherwise.    The goal 

is  to select the good populations.    We would expect any reasonable procedure 

R to have the property:     If R selects IT.  then it selects all  populations TT . 

for j  >  i.    This  is  the isotonic behavior of the procedure R.     Naturally, 

one would propose rules based on isotonic estimators of e-,,...,6, .    Such 

procedures have been  recently investigated by Gupta and Yang  (1981)  in the 

case of normal means  (common variance a    may be known or unknown), by Gupta 

and W.  T.  Huang  (1982)  in the case of binomial  populations with success 

probabilities  9., and by Gupta and Leu (1983b) in the case of two-parameter 

exponential  populations with  location parameters  (guarantee times)  6-  and a 

common  (known or unknown)  scale parameters.    All  these authors have considered 

both cases of known and unknown e^. 

6.3    Locally Optimal  Subset Selection Rules 

In Section 5.4, we discussed a  locally optimal  subset selection rule based 

on  ranks  given by Gupta,  Huang and Nagel   (1979).    Their local  optimality 

criterion involved maximizing the PCS in a neighborhood of an equi-parameter 

point.     Locally optimal   rules  involving different optimality criteria have 

been  recently investigated by Huang and Panchapakesan  (1982b)and Huang, 

Panchapakesan and Tseng  (1984). ' 
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Huang and Panchapakesan (1982b)considered two goals, namely, selecting 

the best from k populations TT^ ,... ,7r|^, and selecting from TT,,...,TT, those 

populations, if any, that are  better than TTQ which is the control population. 

Let TT. have density f(x,e.), i = 0,1,...,k, satisfying certain regularity 

conditions. For the first goal, the best population is the one associated 

ith the largest among Q^,...,fi^.     For the second goal, TT . is defined to be 

better than TTQ if o^. > OQ and inferior otherwise. As in the paper of Gupta, 

Huang and Nagel (1979), it is assumed that the functional form of f(x,o) is 

known. For selecting the best population, Huang and Panchapakesan (1982b) 

derived a permutation-invariant rule 6 such that inf P (CS|(5) = P* where 

"O " 
"o ~ ^o,' ^1 "•••^ °k^ ■ "'"'^^"''^ '^"^^ ""^ locally optimal in the sense that it 

is strongly monotone in a neighborhood of any point 0„ in fi„. For selecting 
'^U    u 

populations better than a standard, it is assumed that e^ is unknown but 

GQ £ 0*, a known quantity. Huang and Panchapakesan considered the class of 

rules .^ for which 

PQ(Tr. is selectedje € SIQ) £ Y, i = l,...,k, 

and obtained a locally optimal rule in this class which is optimal in the 

sense that it maximizes 

.1^ J^ y^- ''  selectediOj = e* < e., j f i)|g_^^, . 

The above criterion of local optimality is related to the ability of a rule 

in choosing a population which is 'distinctly better' than the control while 

all others are not. 

Huang, Panchapakesan and Tseng (1984) obtained a locally optimal rule 

for selecting populations better than a control. Their rule is not based on 

ranks but on statistics J .^   suitably defined to indicate the difference 
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between ir.  and TT„,  i  =  l,...,k.    Also, their procedure does not require equal 

sample sizes.    They considered the class of rules  for which the probability of 

selecting -rr. when 6,  =...= e,   =  e„ is  fixed at the level y.,  i  = l,...,k. 

The local  optimality criterion used by them amounts to maximizing the 

efficiency in a  certain sense of the rule in picking out the superior 

populations  in the direction of each IT.  being superior while all  others  are 

identical  to the control.    Huang,  Panchapakesan and Tseng have applied their 

general  results to the following special  cases:     (a)  normal  means  comparison - 

common known variance,  (b)  normal  means  comparison -  common unknown variance, 

(c)  gamma scale parameters  comparison -  known  (unequal)  shape parameters, 

and (d)   regression slopes. I 

6.4   Two-Stage and Sequential  Rules i 

In Section 5.7, we descirbed a two-stage procedure  (R^Q) of Tamhane 

and Bechhofer (1977) where the first stage involves a subset selection rule 

employed to eliminate inferior populations.    Such  rules have been called 

elimination type rules.    We also noted the difficulty in establishing the 

LFC when k >_ 3.    Consider the problem and the goal  of Tamhane and Bechhofer 

(1977).    They used Gupta's maximum type rule for screening based on the 

first stage sample.     Let us  call  this procedure S-,.    Gupta and Miescke 

(1982)    considered S-,  and two other screening procedures S„ and S^.    S„ 

retains populations that yield the t largest X-,  2 £ t £ k-1, t fixed,  and 

So retains IT. if   and only if X.  > c ,  i  = 1,... ,k.    Let d,  and d^ denote 

two decision rules at the second stage both choosing the population that 

yielded the largest sample mean,  d,   using only the second stage samples and 

dp using combined samples  of both stages.    The Tamhane - Bechhofer rule corre- 

sponds  to  (Spdp).     Gupta and Miescke  (1982)    proved that for  (S   ,d  ), 
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a = 2,3; B = 1,2; the LFC in n^^ is the slippage configuration e ^ given by 

^[1] "•••" ^[k-1] " ^[k]"*^*" ''°'^ (Si,d-|), they have obtained a lower bound 

for the PCS which is minimized over u^^ at e^^, a result similar to that of 

Tamhane and Bechhofer (1979). 

Gupta and Kim (1982)    proposed a two-stage elimination type procedure 

for the normal  means  problem when the common variance a^ is  unknown.     It 

should be noted that for this  problem, Tamhane  (1976)  and Hochberg and 

Marcus  (1981)  proposed three-stage procedures as  pointed out in Section 5.7. 

Gupta and Kim gave a new design criterion and obtained a sharp lower bound 

on the PCS. ' 

For the normal  means  problem (common known variance),  Gupta and Miescke 

(1984a) studied  two-stage procedures with screening at the first stage using a 

Bayesian approach.    The sampling is  done as  in the case of the procedure R„Q. 

Under the assumption of a loss  function which includes the cost of sampling, 

they derived a Bayes procedure with respect to i.i.d.  normal  priors. 

In another paper,  Gupta and Miescke  (1984b)  studied permutation-invariant 

sequential   procedures  for selection from ,ip...,Tr,   belonging to an 

exponential   family, with associated parameters  B-, ,.. . ,o, ,  respectively.     For 

the class of procedures  considered, at stage m (m = 1,2,...)  observations are 

drawn from all  eligible populations  at that stage.    Then the procedure either 

stops  and makes  a  fi na1  subset selection from the eligible populations,  or it 

selects a subset from the eligible populations and proceeds to stage m+1.    Under 

a  general   loss  structure  (favoring large parameters),  Gupta and Miescke   (1984b) 

have shown that at all  stages the finally selected subsets have to be associated 

with the largest sufficient statistics  from the eligible populations.     In fact, 

these natural  final   decisions have been proved to be uniformly optimum in 

terms of the associated risk. 
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For a survey of these and other multi-stage selection procedures, 

reference may be made to Miescke  (1982). 
, .      I 

6.5 Other Developments .  . ' 

In Section 5.7, we discussed the problem of selecting a set of good 

predictor variables. In the formulation of Arvesen and McCabe (1975) only 

reduced models involving r (fixed) out of p independent variables were 

considered. Huang and Panchapakesan (1982a)formulated the problem as one 

of eliminating all inferior models (compared with the full model which is • 

called the true model) using the criterion of expected residual sum of squares 

to define inferior models. Hsu and Huang (1982) investigated a sequential 

procedure for selecting good regression models. Recently, Gupta, Huang 

and Chang (1984) have discussed selection of an optimal subset of predictor 

variables using the criterion of expected residual mean squares to define 

inferior model. Their treatment of the problem differs from that of earlier 

papers in the sense that they use simultaneous tests of a family of hypotheses. 

In Section 3, we defined a rule R, which is really a class of rules based 

on contrasts. Let C denote this class. The procedure R, can select an empty 

subset unless P* is suitably (depending on k, c-,,.. . ,c, _-,) large. Let C_^ 

denote this subclass of rules that select a nonempty subset. Deely and Gupta 

(1968) showed that, for the normal means problem (common known variance), the 

rule of R-, of Gupta (1956) is optimal (in the sense of minimizing the expected 

subset size) in the class C_^_  when the means are in a slippage configuration 

(e,...,6,9+5), 6 > 0, if /n 6 is greater than a constant depending on k and 

P* only. This result (which is essentially amounts to considering k = 2, if 

we consider all configurations) was extended by Gupta and Miescke (1981) to 

k = 3 normal populations. They proved the following result: Let   ,  . 
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P* € (0,1) (P* € [2/3,1)) and n be fixed. Then R^ is optimal within c 

(C_^) at every configuration e = (9^,62,63) such that er3-i-eM-i is 'sufficiently' 

large. 

Gupta and W.  T.  Huang  (1981)  presented a survey of results on mixtures 

of distributions and considered selection from TI,,...,7I    where TT .  has  the 
I K I 

m 

I density f.(x) = I  a..g.(x), where g-(x), j = l,...,m, are known densities 
' -; = ]    IJ   J J 

and a^.-,,... ,a^.^ are  unknown constants  in  (0,1)  such that    I a. ■  =  1,  i  =  1 ,... ,k. 
j = l   ^^ 

They considered several  procedures  for selecting the population associated with 

the largest \^ where A^.  =  A(a^.p... ,a^.^),  i  -  l,...,k. 

Bj0rnstad (1983)  considered a class of estimators called expansion 

estimators  to be used in defining a subset selection procedure.    These 

estimators of the population parameters are obtained by employing preliminary 

multiple comparisons procedures,  and they tend to expand the   differences 

between them,  compared to the usual  estimators.    Bj^rnstad ( 1983)  has studied 

a  class of maximum type procedure based on these expansion estimators. 

Dudewicz and Taneja (1981) considered the problem of selecting the best 

multivariate populations when the comparison of populations is made through a 

preference function g of the mean  vectors. 

Brostrom (1981)  investigated a technique,  called sequential   rejection, 

for selection procedures.    This  technique  is  applicable to  "all  or nothing" 

type goals,  such as  selecting a subset containing all   good populations,  or 

selecting a subset containing no bad populations.    Chotai   (1980a,b)  has 

discussed several  procedures based on likelihood ratio. 

In related developments, Hsu (1981b) obtained parametric and nonparametric 

simultaneous  confidence  intervals  for all   distances  from the best  under 

the location model.     In the parametric case,  he has  shown that these intervals 
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represent a substantial strengthening of the probability statements associated 

with the procedures of Bechhofer (1954) and Gupta (1956, 1955). Jeyaratnam 

and Panchapakesan (1984) have discussed the problem of estimating after 

selection using the subset selection rule of Gupta (1956) for k = 2 normal 

populations with common known variance.      .  | 

7.  IMPACT OF DEVELOPMENTS AND FUTURE - AN ASSESSMENT 

In the preceding sections, we have attempted to provide an introduction 

to the beginnings of the ranking and selection theory and to trace the develop- 

ments in the subset selection theory that took place since then. The literature 

on the subject of ranking and selection on the whole has grown enormously 

over these years, thanks to vigorous pursuit of many research workers. The 

research workers in this field are no more confined to a few schools or a 

few geographical parts of the world.  It serves well to take a look at the 

accomplishments of the past in order to visualize the potential needs of 

the future. Our general assessment here is not confined to subset selection 

alone but to the ranking and selection field as a whole. 

In tracing the beginnings of what are now called selection and ranking 

procedures we referred to the indifference zone and subset selection approaches. 

The inadequacies of the tests of homogeneity and the multiple comparisons 

techniques to answer the concerns of the experimenter regarding the best 

population or subset of best populations had been recognized by the late 

forties. The slippage problems of Mosteller (1948) and Paulson (1952) 

were early efforts in the direction of more meaningful formulations. The 

early papers dealing with choosing the best population were Bahadur (1950) 

and Bahadur and Robbins (1950). The stage was set for the development of 

the field of selection and ranking when Bechhofer published his now classical 

1954 paper. 
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Some of the early applications of selection and ranking procedures were 

the area of animal science and agriculture. A few papers worth noting in 

this respect are Becker (1961, 1963), and Putter and Soller (1964, 1965). 

Several papers have appeared dealing with applications to tournaments, traffic 

fatality data, system performance evaluation, accounting, reliability models, 

education and psychology. A list of papers with such specific applications 

is given the recent categorized bibliography of Dudewicz and Koo (1982, 

pp. 88-92). A bibliography of applications is also given in Gibbons, Olkin 

and Sobel (1977). For some papers advocating selection and ranking in 

practice, see Chew (1977a,b). 

Although tables needed to implement the procedures were available in 

many papers starting with Bechhofer (1954), the application of the theory 

by the user had been rather slow. Part of this problem until recently 

was due to a lack of books bringing in the techniques and results in an 

easily accessible way for users at various levels. The monograph of 

Bechhofer, Kiefer and Sobel (1968) was the first book to deal exclusively 

with the subject. Though written for the theoretician and the practitioner, 

the book represents significant contributions of the authors in respect of 

sequential procedures and thereby perhaps is accessible only to sophisticated 

users. Also, the period 1965 - 1975 was the period of main growth of the 

field and as such it would have been rather premature for a methods-oriented 

book for the practitioner or a comprehensive book on the developments. So 

it was not until the late seventies that the next two books fulfilling these 

objectives came out. The book of Gibbons, Olkin and Sobel (1977) brings the 

basic methodology (mostly using the indifference zone approach) to the 

practitioners though not written solely for them. The text of Gupta and 

Panchapakesan (1979) provides a comprehensive survey of the developments in 
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all aspects of the theory with a special chapter on Guide to Tables. 

These are followed by the books of Gupta and D. Y. Huang (1981) and Buringer, 

Martin and Schriever (1980). Besides these, the text of Dudewicz (1976) 

devotes a chapter to selection and ranking, and the book of Kleijnen (1975) 

refers to the uses of several selection procedures with regard to 

simulation. In addition to these, several expository articles have appeared 

in journals from time to time; these are either overviews of the subject or 

surveys of developments dealing with certain aspects of the theory. A 

special issue of Communications in Statistics - Theory and Methods (Volume 

A6, Number 11) was devoted to selection and ranking procedures. 

The books and special issues mentioned above have certainly contributed 

to further developments in the theory. Equally important are the constant 

forums for exchange and dissemination of ideas provide by special meetings 

and workshops. In this respect, special mention should be made of the 

special course on selection and ranking under the auspices of The American 

Statistical Association during its annual meeting in 1979 at Washington, D.C., 

and a similar special course organized at Naval Postgraduate School. The 

lecturers in these two short courses were: Bechhofer, Gibbons, Gupta, and 

Olkin. Also to be noted is the special advanced workshop held in Summer, 1982, 

organized by Dudewicz, in Honolulu, Hawaii.      i 

In this connection, mention should be made of the proceedings of three 

symposia held at Purdue in 1970, 1976 and 1981. These are published under 

the title Statistical Decision Theory and Related Topics.  In each of the 

three volumes, there are quite a few papers dealing with selection and ranking. 

These activities described above have brought the developments in the field 

to the attention of research workers in industry, government and academia. 
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Although for several standard situations, tables are available in the 

original papers and in the book of Gibbons, Olkin and Sobel (1977), it is 

desirable to develop computer packages for applications. Some packages have 

recently been developed by Jason Hsu in cooperation with S. S. Gupta. 

Considering the fact that many of the activities that we have described 

in the preceding paragraphs took place within the last five years, it is 

perhaps too early to be pessimistic about the absence of dramatic change in 

the attitudes of the users. The major hurdle, if we may call it so, in 

adopting the selection and ranking formulation lies, on the part of many 

applied statisticians, in giving up the testing of a 'null hypothesis'. 

Finally, as our review would indicate, there are several situations in 

which more satisfactory solutions are needed. Some of the areas where not 

much has been done are multivariate problems, reliability models, and 

selection of the best predictor variables. Little attention has been paid 

to problems that arise with regard to model selection, time series data and 

signals in communications. 
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